Friday, August 20, 2021

$$
9: 00 \quad \mathrm{a} . \mathrm{m} .
$$ \\ \section*{\title{

SPECIAL EXCEPTION APPLICATION
}} \\ \section*{\title{
SPECIAL EXCEPTION APPLICATION
}}
QUAKER VALLEY SCHOOL DISTRICT

$$
\begin{gathered}
\text { LEET TOWNSHIP } \\
\text { ZONING HEARING BOARD } \\
194 \text { Ambridge Avenue } \\
\text { Fair Oaks, PA } 15003-1248
\end{gathered}
$$

Reported by:

CAVALIERE COURT REPORTING
Leaette Cavaliere, Court Reporter 162 Cobblestone Drive Pittsburgh, PA 15237
(412-508-0035)

```
APPEARANCES, Continued
    ON BEHALF OF CITIZEN PROPONENTS:
                            DANIEL MILLER, ESQUIRE
        K&L Gates, LLP
        K&L Gates Center
        210 Sixth Avenue
        Pittsburgh, PA 15222-2613
    ON BEHALF OF CITIZEN OBJECTORS:
    LOU DePAUL, ESQUIRE
        Eckert Seamans
        U.S. Steel tower, 44th Floor
        600 Grant Street
        Pittsburgh, PA 15219
        ON BEHALF OF PROPERTY OWNER THOMAS MICHAEL:
        THOMAS J. MICHAEL, ESQUIRE
        436 South Main Street, Suite 200
        Pittsburgh, PA 15220
```1 INDEX TO EXHIBITSPAGE
QVSD Exhibit 11 - Resume/Geoffrey C. Phillips 6
QVSD Exhibit 11.5 - Resume/Joseph F. Boward 6
4567DePaul Exhibit 1 - Kilbuck Twp. Report43
891011
12131415161718
\(\underline{P} \underline{R} \underline{O} \underline{E} \underline{E} \underline{D} \underline{I} \underline{G} \underline{S}\)

MR. SOSTER: We will convene the Leet Township hearing board. We will open with the pledge of allegiance.
(Pledge of Allegiance)
MR. SOSTER: And this is a
continuance of the application made by the Quaker Valley School District and just a note, due to the Covid, if you feel comfortable moving wider, fine, your choice of how you like to social distance. And I believe, Mr. Solicitor --

MR. RESTAURI: We need to have the oath given. So if anyone is here or on zoom and intends to testify, Ms. Cavaliere is going to administer the oath. If you decide later to testify and you haven't taken the oath, please let us know at that time and she will swear you in. If you do testify, it will be presumed that you have been sworn in and you are thereby representing to us that you have taken the oath. So if you plan to testify, Ms. Cavaliere will swear you in.
(WITNESSES JOINTLY SWORN)
MR. RESTAURI: Thank you. My understanding is that the school district has two more expert witnesses.

MR. GRAMC: We have two here today. We will have one testify. They will both be available to answer questions.

MR. RESTAURI: Very good. Then, Mr. Gramc, please proceed.

MR. GRAMC: Just to save time -there is ten copies of everything cause I was told to do that. This is the Geoff Phillips resume and Joe Boward's resume. That's Exhibit 11 is Geoff Phillips, 11.5 is Joe Boward, and Exhibit 12, QVSD Exhibit 12 is Mr. Phillips' report. So I will just leave these here for you.

MR. RESTAURI: Thank you.
MR. DePAUL: I have not seen a copy of those. Can I assume those are the exhibits previously submitted and they are identical to those? Or is there anything new?

MR. GRAMC: They're not new since we've started this hearing.

MR. MICHAEL: Are they new from
the time that they were submitted previously?
MR. GRAMC: They have not been submitted previously to this board at this hearing cause these witnesses are just testifying today. So these are -- I'm not sure what the question is.

MR. DePAUL: If you recal1, Dan, there was a procedure whereby if reports were submitted in advance of the hearing pursuant to agreement of parties and there is an opportunity to object and raise issues regarding those reports. If these reports are the reports that have previously been submitted, that's fine. If they are new and have not been submitted as part of this process, then we have to have an opportunity to review those.

MR. RESTAURI: Well, the school district has submitted resumes and reports and they are different documents. The resumes are different documents from the reports.

MR. MICHAEL: I think all he is asking, Mr. Solicitor, is there was a report previously submitted pursuant to the agreement. Is this the same as the other?

That's all he is asking.
MR. DePAUL: I want to make sure this is nothing that we have not previously seen or that has not been previously submitted because \(I\) don't have a copy of it here.

MR. RESTAURI: Right.
MR. DePAUL: It appears to me, is it just the four page letter that's been submitted?

MR. GRAMC: Yes. And the resumes.
MR. DePAUL: That's fine.
MR. RESTAURI: Let's start here then. You are calling Mr. Phillips?

MR. GRAMC: I am.
MR. RESTAURI: Does anyone
challenge Mr. Phillips' qualifications to testify as an expert in this area? Hearing none, his testimony will be accepted as offered within his field of expertise.

MR. GRAMC: For explanation, we are going to have Mr. Phillips testify to the background and to the report. Mr. Boward assisted in that report with the firm so we have both of these engineers available today. Because as questions come on
cross-examination, it may be more appropriate for one or the other so we wanted to make sure everybody was available.

MR. RESTAURI: Appreciate it.
MR. GRAMC: Mr. Phillips will just
testify on our behalf and, as I've said previously, we are doing this as a courtesy because we have been requested to do this on geotech. We don't believe any of the geotech is part of the use of the property. We understand it's a very important part of the design factor when we go to the planning commission and whenever we have to design the building that's important.

I also make it clear that
Mr. Phillips and Mr. Boward are engaged as the engineers on the due diligence. They have not been engaged, no one has been engaged on the design of the building. We do not have -- the architect has not designed the building so there can be no engineering relating to the specific building. What we have is the general engineering on whether you can build on this site and that's what we're presenting.

MR. RESTAURI: So you are
presenting his testimony about land use, not about the building.

MR. GRAMC: Just on whether this land can support a new high school.

MR. RESTAURI: Understood. Thank you, sir.

MR. DePAUL: Vince, just so the record is clear, we have an objection to the school district's characterization of the necessity of this testimony and what constitutes their burden of proof under the applicable ordinance standard and what needs to be proved. It's our position, obviously, that they need to prove that this is safe and can be used properly and not only with respect to use, but the construction of the site, and the dangers potentially associated with the construction of the site are inextricably intertwined with the use.

So if it turns out that somebody would have the position that the use is fine but the construction is dangerous, then it's our position that those are inextricably intertwined and one in the same. So \(I\) want to make the record clear on that point before we
get started and so no one can argue there has been any waiver.

MR. RESTAURI: Understood, and it's noted. Thank you.

MR. MICHAEL: We will join in the objection.

MR. RESTAURI: Thank you.

GEOFFREY PHILLIPS,
having been first duly sworn, was examined and deposed as follows:

\section*{DIRECT EXAMINATION}

BY MR. GRAMC:
Q. Could you please state your name for the record?
A. My name is Geoffrey Phillips.
Q. And could you give us - can you verify the Curriculum Vitae that we have submitted on your behalf as a qualified engineer?
A. Yes, I'm a 1 icensed professional engineer in Pennsylvania and have over 30 some years of experience.

MR. MICHAEL: Can you speak up, please?

THE WITNESS: I'm a licensed civil professional engineer in the State of Pennsylvania and several other states and have over 30 years of experience working in site development.

BY MR. GRAMC:
Q. And did you prepare the report that we have submitted as Exhibit 12 to the board?
A. Yes, my team, Garvin, Boward, Beitko, prepared the report for the site that is before the board.
Q. And Joe Boward was involved in that process with you?
A. Yes, he's a part of that process.
Q. Are you familiar with the property shown on the plan that's posted here as SP-3?
A. Yes, sir. We have been involved in the site. We were hired by the school district to do the due diligence evaluation of the property prior to them purchasing the property.
Q. Could you explain what that due diligence involved and the conditions of the soils?
A. Basically, the due diligence included evaluation of surveying the property, evaluating the geotechnical aspects of the
property, evaluating all environmental aspects of the property, and preparing preliminary grading plans for the stipulation of whether the school district could build -- there was enough property here that was able to create a buildable pad of at 1 east 50 acres which at the time that was the criteria we had been given that the school district in their planning, very preliminary planning needed to construct the high school campus which included all amenities for the district.
Q. In your report you referred to colluvial soils and red beds. Could you explain those conditions?
A. Yeah, I'11 keep it in brief terms. Joe Boward could be more technically oriented with it. But colluvium is where gravity pulls down the soils to a lower part of the slope. That's where the soils have -- their safety factor has been decreased due to wind, water, erosion, to be less than one. So the soils, by gravity, go to the tow of the slope.

Now the red beds which are used is the terminology that's generally in industry of engineering and geotechnical that describes
the material that has sild from claystone. Claystone is throughout the whole district. It's throughout all of the township, other than down along the flood plain areas where the creeks are. It's a claystone that is throughout the whole district.

There isn't any part of Leet Township or the school district that doesn't encounter this type soils if you do any kind of development here. All the homes, all the hillsides up here has that in it.
Q. Can you safely build on colluvial soils or red beds?
A. You don't build on the colluvial soil. What we do is remove it -- because it's not compacted, it's unconsolidated material, so you go in and remove that material down to the claystone or rock layer or substantial material and then you build up from that. So you remove that material that has already siid.
Q. And that would also involve the red beds and the colluvial soils would all be removed to get you to a stable base?
A. That's correct.
Q. And was that your recommendation to the school district, that this site could be safely -you could safely build a high school on this site by engaging in that activity, by removing the troublesome soils?
A. Right. As you see on the site plan that is before the board, the area where any slopes are being proposed, you can see it's extensively taken down to the lowest part of the slope where we take all the colluvial material out, onto stable material, then we build the slope back up. Sort of when you look at it in a cross-section, it looks like a set of staircases. So you actually sawtooth or staircase the slope back up in solid material so that it is well anchored.
Q. After you engage in that recommended action to safely build, would the site be more stable or less stable than it is today?
A. The site will be more stable because we have a factor of safety of at least one and a half whereas the conditions that are out there now, they're borderline one.
Q. Are these site conditions unique to the use of this property as a high school or would these
same conditions need to be addressed for any other development on the site?
A. They would need to be greatly addressed for any kind of development on this property.
Q. So are all these physical conditions, these conditions you identified, related to the physical condition of the site rather than what the end use of the site would be? Whether it be single family residential, other institutional, school, do these conditions exist for all of those uses?
A. Yes, any development that takes place on this property, all of these properties, you're going to encounter those materials and that condition so therefore they have to be engineered properly in order to be able to develop.
Q. Can the site be safely developed?
A. Yes, it can.
Q. Now, Geoff, did you prepare the survey that's shown on SP-3?
A. Yes, we did.
Q. And there was some testimony that was a ittle bit confusing by prior witnesses regarding whether this site has access at the southeast
corner. Could you explain whether this site has access to any other public roads other than Camp Meeting Road?
A. Yes, if I can approach the drawing.

MR. RESTAURI: Of course.
MR. DePAUL: Object to the scope of this testimony. It's outside of the witness' expertise. He is not a traffic engineer. He is the geotech engineer. I will keep that running objection.

MR. RESTAURI: It's noted. Thank you.

MR. DePAUL: I won't interrupt the testimony again.

MR. GRAMC: The question had
nothing to do with traffic.
MR. RESTAURI: Proceed.
MR. GRAMC: We will proceed.
THE WITNESS: The eastern -- the property line I'm going to follow with my finger -- hopefully, everybody can see -- is here, all the way over and around. This is Little Sewickley Creek Road. This is Walker Park that runs all along each side of Little Sewickley Creek (indicating). So this
property is not abutting Little Sewickley Creek.

So as far as access to Little
Sewickley Creek, there is a right of way that is here. However, because of the terrain, this is very, very steep and there are wetlands where this is located. It's not feasible to get from up here down to there for any type of use other than maybe a ski slope. It's very steep.

So it does not abut Little
Sewickley Creek at any point. The only road that this property is adjacent to is Camp Meeting Road and what is called Wood Spur down here in the subdivision here (indicating).

MR. GRAMC: Okay, thank you.
That's all the questions \(I\) have for Mr. Phil1ips.

MR. RESTAURI: Thank you.
Mr. Miller, any questions for the witness, sir?

MR. MILLER: No, thank you.
MR. RESTAURI: Mr. DePaul?
MR. DePAUL: Yes, if I may.

BY MR. DePAUL:
Q. Good afternoon, Mr. Phillips. How are you today?
A. I was running a little late.
Q. That's okay.
A. I apologize. It's just one of those things where I looked at the clock and thought it said one thing versus another.
Q. That happens. It's the end of summer.
A. I'm here.
Q. And we're moving. But I appreciate your time this morning. As you know, I'm an attorney representing several of the objectors to the proposed exception here.
A. Yes.
Q. And \(I\) have two sets of questions to ask you. One, the first set is with regard to your report that has been submitted as an exhibit today. Am I correct that, I take it from your prior testimony, that this June 7th, 2021, report has been submitted as an exhibit, that you have drafted that and you have knowledge regarding the facts and opinions set forth in
that report?
A. Yes, sir.
Q. So I have a couple questions regarding the representations made in this report. If you look on the first page, the second paragraph, about the third sentence down, it says:

Information obtained from the 75 test borings indicate the east-west aligned ridge is capped by sandstone underlain by the often 1 ands 1 ide-prone Pittsburgh red bed formation. Did \(I\) read that correctly?
A. Yes.
Q. With respect to the 75 test borings, would you agree with me that if it's easy to develop on a property and the property is not 1 andslide prone and there are little issues with the property, that it's not necessary to take 75 test borings?
A. Correct.
Q. So the reason that we took 75 test borings with respect to this particular property is there are potential issues given the nature of the property.
A. Yes.
Q. And can you explain, so the board understands,
what a test boring is.
A. A test boring is where we drill down into the ground to observe what the geologic formation is, whether it's topsoil, rock, what kind of rock, what kind of other material, whether it's been fill material that's been placed, whether it's good fill material that was compacted or was fill material that was just dumped over the side of a hill, whether there are stumps or trees or other material involved. So that when we go in to design, we are aware of all these things so we can take those conditions and the design of the site.
Q. And you conducted the process that you just described 75,75 separate times because you were probing for any potential issues with the property.
A. Well, let me just clarify the 75. Thirty of those borings were done prior to the site by Gateway Engineers who was the engineer for Mr. Tuh1, in order to build his house, and those borings were along the top of the ridge and they had gone down into rock but had not gone substantially deep enough to determine how thick, if there was any colluvium which is
the material that has siid by gravity was on the site.

So we did another 37 holes, spaced out over two to three hundred feet throughout the whole piece of property and due to timing and issues of getting property access, we did another eight borings down towards Camp Meeting Road on Mr. Dohr's property.
Q. So just in terms of the timing, when you conducted these borings, am I correct that at the time you conducted the borings the school district had already purchased the property?
A. No, this was before the school district purchased the property.
Q. And who commissioned you to take the borings?
A. The school district.
Q. In anticipation of purchasing the property?
A. It was one of the sites that was selected by them as a potential site for the school and therefore they hired us to do the extensive due diligence to find out, is this property going to be adequate to build on?
Q. And the borings were conducted because there was a potential for issues given the nature of the property.
A. Given the history of the property, there was Mr. Tuhl's involvement in it, that out where the old driveway that went up to the Walker house, there was already existing evidence of sliding material.
Q. In your report you mentioned in the same sentence that I previously read from your report, you mentioned that the ridge is capped by sandstone.
A. Yes.
Q. And sandstone is hard, right?
A. That's correct.
Q. And it's not malleable.
A. No.
Q. So if you encounter sandstone, that sandstone, and you need to move it or rearrange it, that sandstone needs to be blasted.
A. Depending on the hardness of it. If it's very hard sandstone, yes. If it's a hardness that machines could go in and they could rip it, they have the great big tooths on the back of the machines. So that's something that's still to be determined. We did not do that testing or it was not done at this stage of the game. It was determined that there is
sandstone.
Q. Right. So you don't know at this point in time whether or not blasting is going to be necessary and/or whether or not the machine process that you described is going to be necessary or whether or not they'11 both be necessary.
A. At this time, no, we have not because we have not -- nobody has been hired to design that aspect. This was a due diligence which you go in to evaluate, make them aware of all the concerns that we see and how they can be engineered and the design.
Q. So the amount of blasting that will be required has not even been evaluated.
A. That's correct.
Q. So as you sit here today, you have no idea how much blasting and/or what type of blasting is necessary to develop this property.
A. That's correct.
Q. And so nobody, as far as you're aware, knows anything about the nature of the blasting that will be required on this property.
A. At this time, no, that's correct.
Q. Would you consider blasting a dangerous
process?
A. If it's done properly, it is not.
Q. Can it be a dangerous process?
A. It can, if it's not done properly. I've seen it done properly and, you know, they take a lot of precautions prior to it. Surveys are done throughout the area of all the homes within a certain radius of the project prior to any activity to evaluate. It's basically like an insurance company goes out and evaluate, they videotape all the houses, any cracking and existing conditions, and then there is monitoring throughout the blast with monitors all around the site to determine how much the ground shook and then there is evaluation of all the homes afterwards to see if there is any damage.
Q. So based on what you described, there can be damage to the homes in the area.
A. There could be, yes.
Q. And you don't know, you don't have any idea, you said a professional or somebody that's very experienced can conduct this blasting, you have no idea who in this instance is going to conduct the blasting, do you?
A. No, but that criteria will be in the specifications to minimize any of those problems to the residents in the area.
Q. But that whole process hasn't been explored or evaluated, has it?
A. No, not at this time.
Q. And have you seen blasting gone wrong, too, haven't you?
A. Not in site development, but you see it in rock quarries and things like that where things have -- and that's not the type of blasting that will be done here.
Q. So as you sit here today, you're unaware of any instances during site development where blasting has gone wrong.
A. Not in my experience, I have not witnessed that.
Q. But it's possible.
A. Anything is possible.
Q. If we could turn now to page two of your report, sir. If we can look at the second paragraph, the first sentence says: In particular in this case, the project plan is to incrementally remove the colluvial soil deposits.

When you say incrementally remove the colluvial soil deposits, what do you mean by that?
A. You go in and take it out at stages, more so down towards Camp Meeting Road where the deepest deposits are that we found through the borings. You can't just go in and dig straight down a deep hole. You have to go in and do it incrementally so that you don't destabilize any of the surrounding area.
Q. And does that take a sufficient amount of time since you are doing the removal of the colluvial soil incrementally?
A. Yes, it does take time.
Q. And that can take weeks?
A. Yes.
Q. Could take months?
A. Yes, it could.
Q. And what types of vehicles will be removing the colluvial soil?
A. Large excavators.
Q. And how many large excavators at a time does it take to remove the colluvial soil?
A. Depending on the size of the excavator, probably one.
Q. And how big is an excavator?
A. They can get as big as you want, you know, to the point where you have to bring it in on tractor-trailer, multiple tractor trailers, yes.
Q. So multiple tractor trailers will have to bring an excavator up to the site to remove the colluvial soil.
A. Yes.
Q. And once the colluvial soil is removed, what happens to it?
A. We mix it with some of the other suitable material on site which will be some of the sandstone, but most of the sandstone and rock that is excavated will be put down at the tow of the slope to start building the slope up with stable material.
Q. As you sit here today, you're unaware of any concrete plan regarding specifically how the colluvial soil will be incrementally removed.
A. No, because the final geotechnical report has not been done yet.
Q. Right. Just so the record is clear, the answer to that question is no, you are unaware of the specifics of any plan to incrementally
remove the colluvial soil.
A. At this time, no, it has not. Because the site has not been designed.
Q. In that same sentence, "The project plan is to incrementally remove the colluvial soil
deposits with sufficient engineering forethought," what is sufficient engineering forethought?
A. What we started which is to drill and be aware of all the conditions that are out on the site so that we are designing a slope that is going to be stable for a long time and have at least a factor of safety of one and a half.
Q. But you're unaware of any specific plan that would detail what the specific or sufficient engineering forethought in this instance would be.
A. That plan has not been designed yet.
Q. Would you agree with me that after there is some excavating there could be potential subsurface issues that you do not anticipate that you could encounter?
A. Correct. Every project has it. Nobody has a crystal ball, can tell what is underneath the ground.
Q. So there is a lot of unknown regarding how the development of this site will be handled after the excavation begins.
A. Yes, that's why we have geotechnical engineers on site as the excavation is being done, so that we can observe these conditions as they change, so that if the design changes need to happen, they can happen.
Q. So as you sit here today, you can't tell the board and you can't tell the citizens that live in close proximity to this site what will be encountered after you start excavating in terms of what will be encountered subsurface on the site.
A. No, I don't have a crystal ball.
Q. And you can't tell the board and you can't tell the folks that 1 ive in close proximity to this property the amount of blasting that will be necessary as part of the site, can you?
A. At this time, no.
Q. Do you anticipate the need for additional exploratory borings?
A. Yes.
Q. How many?
A. Depending on where all the amenities are
located, could be possibly another hundred borings.
Q. So there is a significant amount of additional exploration and analysis that will be required.
A. That's correct.
Q. And as you sit here today, you have no idea of what is going to be encountered with those hundred plus additional borings or what is going to be discovered in those hundred plus additional borings.
A. Well, preliminarily, we have shown what the geology of the site is but due to the spacing of the holes across the whole site, there could be, you know, deeper colluvium or there could be shallower colluvium. We don't know.
Q. So you have taken -- as far as you know, there are 70 borings that have taken place thus far.
A. Correct.
Q. You intend now to take almost double the amount of those borings in addition to the 70 that were already done.
A. Uh-huh.
Q. And you're doing that because you need to figure out what is below subsurface on this
property.
A. In more detail, what's below. We have a general idea of the type of soils and the type of rock, but we don't have the more specific and whether you drill a hole that's located 20 feet here or 20 feet there, the colluvium may be 15 feet deep and over here it may be ten feet deep. So there is a variation. That's why we do borings.
Q. So you need to conduct an additional hundred borings to get a more detailed understanding of what exists subsurface at the property.
A. In order to get final design parameters for the school building and the roads and the slopes, yes.
Q. So as you sit here today, you're asking this board and you're asking the citizens that 1 ive in close proximity to this site to accept all these potential unknowns that could be discovered during these additional hundred borings and with additional blasting or additional site development that would need to happen.
A. Yeah, but that's normally done in the planning stage as far as the planning commission and
the supervisors or council which is the actual design. We're at a zoning hearing which is the land use. Nobody comes to zoning that has a final design before them. We are presenting, with this site plan to the board, what the high school is going to look like, where the roads are, where the accesses are, as required by zoning, but not to the level of final design, ready to construct today.
Q. I move to strike that to the extent he's offering a legal opinion.

MR. RESTAURI: It's noted.
Q. Would you agree with me that, in order to use a property, you have to develop it?
A. Well, there is varying -- if you want to use the word "development," that's very broad, but you could use it as exists, you know, as woods.
Q. So in this instance that property could be used as woods.
A. Yes.
Q. And it could be used for an environmental park.
A. If somebody wanted to pay for it and keep it that way, yes.
Q. And there are many uses for this property that would not involve development.
A. Wel1, other than letting it be natural.
Q. You could put a park there.
A. But then you're developing it. Cause you're going to have to put parking. Just as Walker Park is down below, people have to have access to it. So you are developing it.
Q. There are varying degrees of what would be necessary -- the development work that would be necessary to make a property for certain use.
A. Yes, right.
Q. Would you agree with me, to build a school on this property requires significant development work?
A. Yes.
Q. Would you agree with me, to use this property for a school, it would require some significant development?
A. As a school, that's what we are proposing, yeah. There is significant development of creating access to the property, building the buildings and all the parking that is required by zoning.
Q. Would you agree with me that with respect to the development that is required to use this property for a school, you don't have detailed information regarding building foundation designs, road supports or field supports?
A. Not at this time.
Q. Cause you have to take a hundred additional borings to figure out the state of the subsurface property, state of subsurface on this property.
A. Yes, because that is the good engineering that needs to be done in order to make this a safe site.
Q. And you don't know what you're going to encounter with these hundred additional borings.
A. I don't even know if it will be us because they have not chosen us an engineer for the project yet. The board has only chosen an architect.
Q. Right. And the architect and site plans and engineering plans aren't developed yet, are they?
A. No, they are in the beginning stages and the architects are doing what they do. I'm the
engineer, they're the architect.
Q. And you don't know what design measures will be implemented, do you?
A. As far as the buildings?
Q. Yes.
A. No, I don't, cause that's between the board --
Q. And as far as development of the property, you don't really know that either, do you?
A. I haven't been hired to do it. All I was given was to -- in the due diligence, was to provide 50 developable acres on a piece of property. What was going to be on that, no, I don't know.
Q. So you have to conduct an additional hundred borings to determine what is located subsurface on the property. You don't know what design measures are being done with respect to developing the property for construction and you don't know the design measures that are going to be implemented with respect to the school, do you?
A. No, because at this time the school district is coming before this board to get the special exception which would allow them to build the school here according to the ordinance and
that's why it's a special exception is that the board has the right to decide what type of school can go in there.
Q. Strike that again cause it's a legal conclusion. I just want to ask you about geotech.
A. Okay.
Q. So given all those unknowns that you just testified are existing with this property, as you sit here today, you can't say for sure that the development of this property is going to be safe, can you?
A. I can say that it can be developed safely.
Q. But you can't say that it will be developed safely.
A. Not unless -- I can only say that if I'm doing it.
Q. You agree with me, as you sit here today, you can't ensure that during the development of this property that won't affect homes that are close to the property.
A. There is going to be an effect. The property is going to get developed whether it's a school or not. It is going to affect -whatever goes there is going to affect the
community.
Q. When you say whatever goes there, you mean the actual process of developing this property is going to affect the community.
A. Yeah, you can put homes there, you can build a park there. There is going to be some impact.
Q. If you build a school there, it has the potential to have a detrimental impact on the community that 1 ives close to the school.
A. I wouldn't use detriment. I think it's going to have an impact, but \(I\) would not say detriment.
Q. So if there is blasting and it cracks my foundation and \(I\) live close to that area, you wouldn't call that a detriment to my property?
A. That's why there is insurance out there.
Q. So you agree with me it would be a detriment to my property?
A. There would be an impact to your property. I don't know that it's a detriment cause a detriment is varying degrees and levels.
Q. So if there is a crack in my foundation as a result of blasting, it's your testimony today that's not a detriment?
A. Not in my definition.
Q. Would you agree with me that it's entirely possible and maybe even likely that during blasting the homes in close proximity to this site are affected?
A. There will be an effect, yes. To what degree, I can't testify to.
Q. And in terms of what you view as a degree, you don't even view a crack in a foundation of a home caused by blasting as a detriment.
A. No, because I'm pretty sure most all these houses in Western Pennsylvania have some cracks in them just due to settlement of the ground naturally and due to the types of soils, the types of construction, whether the house is built on fill that was not properly placed. So I don't know of any house I've ever been in that doesn't have cracks in it.
Q. So it's your testimony that if you live in close proximity to this site and there is blasting and it puts a crack in the foundation of my home, \(I\) just have to accept that.
A. No, that's why they do the insurance inspections ahead of time. If that crack was not there, then the blasting contractor's insurance will cover fixing it.
Q. What if that blasting injures somebody that lives in close proximity to the site?
A. Then the insurance will cover that issue.
Q. You're still injured, right?
A. Yeah, and a tornado could hit here or any other natural things could hit. You could walk --
Q. But this isn't a natura1 -- you are comparing this to a tornado. This isn't a natural event. There are men going in and blasting it. Those aren't comparable events, are they?
A. It's a disaster. I mean it's the same -- the terminology you're using that it's a detriment, you know, no different than a vehicle could run into a house. It's a detriment to that. There is potential of any kind of those things.
Q. So just so I'm clear, you are comparing the blasting that could be conducted on this site to a vehicle running into somebody's house and a tornado hitting somebody else's house. Am I right? That's what you just said, right?
A. I said that those are causes that can cause cracking to happen into a house and could possibly take 1 ife.
Q. So it's your testimony that the blasting on the site could possibly take a life. That's what you just said, right?
A. No, I said that -- I was referring to a tornado or a car, as you said, that the blasting -- what would happen if it did take a 1ife.
Q. So it's possible that could take a life.
A. Anything is possible.
Q. And even though if you lost a life, insurance would cover that, but the life doesn't come back, does it?
A. No, it doesn't.

MR. RESTAURI: Mr. DePaul --
MR. DePAUL: Hold on a second. MR. RESTAURI: I want to ask a procedural question. Mr. Gramc said earlier that if you wanted to ask questions on cross of the geotech expert, you could do that, and I just wanted to alert you that you have that right. If you want to ask those questions and come back, however you want to do it.

MR. DePAUL: We are proceeding
here. I have an exhibit to mark.
MR. RESTAURI: How do you want
this to be marked, Lou?
MR. DePAUL: Whatever pleases the board. My suggestion would be to mark them by witness, that way it's easier to categorize, if that makes sense to everybody.

MR. GRAMC: I think we have running objections, but \(I\) object to this, involving Kilbuck Township. I don't know we have authentication of the report, and I don't know it has anything to do with Leet Township.

MR. RESTAURI: So noted. This
will then be -- Mr. Phillips has his two, his resume and his report. Let's make this Phillips Exhibit 3. Let's not do it that way. Is this the first exhibit you've offered, Lou?

MR. DePAUL: It may be, although I don't recall, so \(I\) don't want to stipulate that it is, in the event \(I\) did previousiy.

MR. RESTAURI: Let's make these done by lawyers who introduce them. So this is Mr. DePaul's Exhibit 1, 8-20-2021.

MR. DePAUL: For the record, this exhibit is the Kilbuck Township landsiide findings and recommendations, report of the task force and advisory committee on the

Kilbuck Township landsiide, June, 2008.
BY MR. DePAUL:
Q. Mr. Phillips, are you aware of this report?
A. No, I'm not.
Q. So you didn't review this report in anticipation of providing your testimony or your findings or thoughts about this site.
A. No. I am aware of this site, being an engineer in the area, so I'm aware of it, but I do not know all the details of it. I do know that Garvin, Boward, Beitko was hired by one of the insurance companies that was involved in this. So any more specifics regarding this site and more technical would be better asked of him, of Joe.
Q. And Joe is not on your team.
A. Joe Boward.
Q. With your --
A. Yes.

MR. GRAMC: He is here.
THE WITNESS: So I'm just saying I don't -- I would not be able to comment on this.

BY MR. DePAUL:
Q. No, I appreciate that and so I --
A. Instead of asking me --
Q. I have a question for you and \(I\) might have a similar question for Joe. So my question is, you were aware of this before you authored this letter.
A. Correct.
Q. And even though you were aware of the Kilbuck Township landslide and you were aware of the fact this happened on similar type property in the same district, you didn't review or evaluate this report in anticipation of drafting your report for submission to this board, did you?
A. No, I didn't.
Q. And you testified that, earlier today on direct examination, that the soil in terms of the red bed and colluvial soil in this district is relatively the same everywhere.
A. Correct. Other than the colluvium which, you know, there are varying degrees depending on how much has eroded or been impacted by water or, you know, has settled by gravity to the lower parts of the slopes.
Q. So is it the same generally or is it not the same?
A. It's the same geological type, but it's not the same exactly for development.
Q. So the property that is the subject of this report would have been geologically the same as the property at issue with respect to this development.
A. Yes.
Q. May \(I\) ask questions of your partner, very briefly?

MR. GRAMC: Does the board prefer us to proceed in that manner?

MR. RESTAURI: Yes. Whatever works for counsel.

MR. PHILLIPS: May as well ask the right questions to be responded to.

MR. RESTAURI: And my
understanding is that, Joe, you and Geoff are not partners in a technical legal sense or are you?

MR. PHILLIPS: No, we're on a
team. Garvin, Boward, Beitko is a separate engineering company that was part of the due diligence team.

MR. RESTAURI: And Geoff's company was a separate company.

MR. Phillips: Yes. I have my own -- I'm a civil engineer, he's a geotechnical engineer.

MR. RESTAURI: Okay, and the school district hired him --

MR. PHILLIPS: They hired my team which he's a part of our team. He's a sub-consultant.

MR. DePAUL: Thank you. That was helpful. I appreciate that. So instead of partners, I will use the word "team."

MR. PHILLIPS: Team is what it is.
I have multiple consultants as a team of experts to provide to the district.

JOSEPH BOWARD,
having been first duly sworn, was examined and deposed as follows:

CROSS-EXAMINATION
BY MR. DePAUL:
Q. Joe, could you please state your name for the record?
A. Joseph Frank Boward. I'm a professional engineer. I'm the president and principal
engineer with Garvin, Boward, Beitko Engineering.
Q. And, Joe, do you agree with me you are on Mr. Phillips' team?
A. Our company is part of his team, yes.
Q. And you consulted and collaborated in anticipation of the submission of Mr. Phillips' report with regard to this development.
A. Specifically with respect to the geotechnical aspects of the protocol.
Q. As part of your collaboration with Mr. Phillips on this project, did you review or consider the Kilbuck Township landsiide report?
A. I did not consider the specific report, but I considered the landsiide. I'm familiar with it.
Q. And how did you consider that?
A. When the landsiide occurred in 2004. I was made aware of it cause I'm a geotechnical engineer, all geotechnical engineers in this area were made aware of it. Later on, our company was engaged I think by Walmart -- but \(I\) can't be sure of
that cause it was a long time ago -- to look at it forensically to try to understand some of the causes of the slide. I had visited the site. I looked at it multiple times so \(I\) am familiar with that site and the landslide that occurred there.
Q. That was done in 2004.
A. After 2004. Years after.
Q. You didn't do that in conjunction with this project?
A. No, separate, but you asked me if I was familiar with it.
Q. Did you do any analysis of this Kilbuck Township landslide in conjunction with your work on this project?
A. I analyzed the Kilbuck Township landsiide but not specifically for this project because they are two separate sites.
Q. So as part of your work on this project, you didn't consider at all the Kilbuck Township 1 ands 1 ide .
A. Yeah, I certainly did.
Q. You just testified that you didn't review it as part of this project.
A. Well, I considered it.
Q. How did you consider that?
A. It's a red bed strata in Kilbuck so you have to keep that in mind when you are dealing with any red bed strata throughout Southwestern Pennsylvania.
Q. So this particular development is on a red bed strata?
A. Yes, it is.
Q. Just like the Kilbuck Township landslide.
A. It's on a red bed strata but not geologically the same.
Q. Did you prepare any memos or put anything in writing as part of your project regarding the development of the school here that analyzes or discusses at all the Kilbuck Township landslide?
A. Not in writing.
Q. So there is no memos, there is no records, there is no detailed analysis that was submitted by you to anyone regarding the Kilbuck Township landslide as part of this project.
A. That would be inappropriate for me to do that on any project, even if they have red beds on them, to bring up the Kilbuck Township
landslide every single time.
Q. Shouldn't you evaluate all the potential problems that occur on this site as part of submitting a report saying that this site is appropriate for development?
A. Well, certainly.
Q. And wouldn't the Kilbuck Township landslide be relevant? It's the same soil as has been testified.
A. It's the same red beds but not the same geology.
Q. Did you have any discussions with Mr. Phillips regarding the Kilbuck Township landslide as part of the submission of the report in this instance?
A. Only in passing.
Q. So you did not have any substantial
discussions with Mr. Phillips regarding the
Kilbuck Township landslide as part of the submission of the report regarding development of this property.
A. It would be inappropriate. It would be inappropriate.
Q. You did not, right?
A. No, it would be inappropriate.
Q. It's inappropriate to consider similar type events?
A. It would be inappropriate to be bringing that up with respect to this particular site. I have to keep in mind, as a geotechnical engineer, the aspects related to 1 ands 1 ides throughout Southwestern Pennsylvania. That is what part of the geotechnical engineer does as the standard of care and, of course, with the National Society of Professional Engineers, I have to take that into account.

So, yeah, I of course considered it, but it's inappropriate to be bringing in every single aspect of every single site that has had problems throughout Southwestern Pennsylvania when you write a report for a specific site.
Q. That's because there has been so many sites with so many problems in Western Pennsylvania that in order to think about and categorize them would take entirely too much time.
A. Yes, Western Pennsylvania per square mile has more landslides than any other place in the Continental United States.
Q. Let me repeat that. Did \(I\) hear that
correctly? Western Pennsylvania --
A. Southwestern Pennsylvania.
Q. Southwestern Pennsylvania per capita has more landslides than any other place in the United States?
A. That's why it's so important to have a geotechnical engineer such as myself is so important to be involved in a site like this, especially in Southwestern Pennsylvania. When you have approximately 40 years of experience and when you analyze a site like this, you have to be aware of the conditions and how to address those conditions.

I have worked with multiple sites with red bed materials. Obviously, Southwestern Pennsylvania, because it's so predominant, we have a good understanding of how to deal with those materials, how to make them safe, so the site will be stable in the long term.
Q. You haven't considered what would be done in this instance to make the site safe, have you?
A. Certainly.
Q. Mr. Phillips just testified there are so many variables that are unknown, there are a hundred borings that need to be made, there is
design specifications that need to be finalized, there is work that needs to be done. You don't have any details on any of that stuff, do you?
A. What we did was, when we drill the borings -you have to understand, let me educate you a little bit. When we drill the borings, we drill the borings in such a way that we can look at the proposed fill embankments. We drill them in such a way that you can do cross-sections. The data from the borings, the subsurface data, along with the topography, the existing topography and the proposed topography, is entered into software and the test borings -- of course, we do tests in the borings, hence test borings. They give us data on the physical properties of the soils.

When we enter that in the computer program, we run slope stability analyses to look at the factor of safety of these proposed embankments to see if they are going to be stable in the long term. That is the standard of care for geotechnical engineering. That is what we did. So we do understand that the
site will be safe when it's developed.
Q. And that process you just described, you did that 70 times?
A. You have to understand, we don't do that for one boring. You have to have several borings in a row on a cross-section, develop that full subsurface cross-section. So, no, we didn't do it 70 times, but what we did is developed a cross-section and each cross-section would have been subjected to the sub-stability analysis.
Q. In addition to what you did, you have to do that a hundred more times, right?
A. No, those hundred borings aren't all for slope stability. Many of those borings will be for evaluating what type of material you are going to be cutting to. Just for cuts, not even talking about slopes. They have to be done for the building itself.

Whenever somebody comes up with a final building footprint, you have to drill borings for the foundation recommendations. Some borings have to be drilled for the roadways to determine the subgrade conditions for the roadways, to make sure you design the roadways
in accordance with the California bearing ratio.

So there are many of those borings being drilled for other aspects. Now when they finally come up with a final grading plan that's going to be final with respect to the slopes, then, yeah, some of the borings are going to be reoriented to those slope areas to run the same slope stability analysis to determine how to stabilize them.
Q. So in terms of you said the cutting, I want to make sure I use the right word.
A. Yeah, there were aspects of this project -they were looking at the top of the apex of the ridge being cut down some and hence you are talking about the sandstone, and we have to potentially drill more borings to try to understand what they're going to be sitting on exactly. We drilled a scattering of borings for due diligence to get an idea what you're going to be getting into, but once you come up with a final building footprint, you're going to want to concentrate on that area to try to understand that specific area.
Q. So you don't know exactly what you are
drilling on, to quote your word.
A. That I am drilling on?
Q. You don't know exactly. You use the word you are going to conduct additional borings to understand exactly what you're excavating.
A. In specific areas. For roadways, for the building, that's part of final design which is the next stage.
Q. And you, as far as you are aware, you don't know the slope stability of the road, that still needs to be conducted.
A. The road -- I know, based on the preliminary analysis we did for the due diligence, because the road surcharge is included in the slope stability analysis. When you run a slope stability analysis, if there is a road on top, you add a traffic surcharge cause that will affect the stability of the slope, of course.

So we understand that. But when they do the final grading, we are probably going to have to do some of that again.
Q. I don't believe I have any additional questions. Mr. Phillips, I am not finished with. Actually, I do have one additional question, I'm sorry. My apologies.

Do you have any reason, as you sit here today, to dispute the findings in this report?
A. I haven't read it. I can't confirm or dispute anything in it.
Q. So you haven't read the Kilbuck Township 1ands1ide findings and recommendations?
A. I don't think so. Not this one. I mean when I was involved in the Kilbuck Township and analyzing, \(I\) had 1 iterally thousands of pages of documents. I don't know if this was in there or not, this was years ago, but \(I\) don't think so.
Q. So even though you testified that you considered this report --
A. No, I didn't say that. I said I considered the landsiide. I specifically said that I did not consider this report.
Q. So in your work in trying to understand and consider the landsiide for this particular project, you did not read this report.
A. This report is well and fine, but there are many engineering reports out there, literally hundreds of them on that 1 ands 1 ide, and I'm not sure that this is going to be the end all on that type of situation. This doesn't look
like a geotechnical report.
Q. Did you read this report in anticipation of analyzing and discussing that landslide?
A. I already said I don't think I read this report.
Q. And you mentioned there are all kind of very good reports. Which one of those reports did you read and analyze in anticipation of providing your opinion --
A. There was a report by Kimball Engineers. They were very involved in it. There was a report by -- I can't remember the name of the engineering company, but engineering company from down southern United States. I can no longer remember the name of it.

Actually, I wrote a report but it had to do with how to stabilize that landslide. The specific aspect of it, \(I\) wrote for Kilbuck Township. And I can't remember all the reports. That was 14,15 years ago I was working on that.
Q. So the last time you looked at that stuff was 15 years ago?
A. With those reports, yeah.
Q. And you did the work on this project a year ago?
A. Couple years ago, I think.
Q. So it was at least ten years since you looked at those reports from the time you gave your opinions regarding this project.
A. Probably.
Q. I don't have any additional questions.

GEOFFREY PHILLIPS, having been first duly sworn, was examined and deposed as follows:

\section*{CROSS-EXAMINATION}

BY MR. DePAUL:
Q. Mr. Phillips, if you could open the executive summary of this report which would be on page one after you get past the appendix, at the top it says: On September 19th, 2006, a massive landslide occurred in a commercial development site in Kilbuck Township, Allegheny County. Between 500,000 and 600,000 cubic yards of earth and stone cascaded down the hillside, across the four lane Ohio River Boulevard and onto three adjacent railroad tracks, stopping short of the Ohio River. As
a result, roadway, commerce and railroad commerce were greatly affected as Ohio River Boulevard carries approximately 22,000 vehicles each day.

Did I read that correctly?
A. Yes.
Q. You look at the last sentence, it says: In January, 2007, it was reported that remediation costs totaled two miliion dollars and monitoring costs totaled \(\$ 75,000\) per month. In the end, the commercial development project was halted and the site will be returned to pre-development, natural slope that includes trees and vegetation.

Did I read that correctly?
A. Yes.
Q. Would you agree with me, Mr. Phillips, that you can't guarantee that this won't happen as part -- that a similar event -- let me strike that.

Would you agree with me, Mr. Phillips, that as you sit here today you cannot guarantee that an event similar to the Kilbuck Township landslide will not occur as part of this development?
A. At this stage of the game, no, because it has not been finally designed so, therefore, I cannot say that a situation could arise to this extent that they are talking about here. You have to take into account many factors that that site may have presented that are not similar to this site. Just because you have the word "red beds" and you have a region doesn't mean that the catastrophe that is imminent is of the same caliber.
Q. But you didn't analyze this report as part of your report for this so you don't even know what's similar and what's dissimilar.
A. That's correct, other than in the wording that is here, it doesn't go into the level of detail other than it just said it happened and this is what the cost was. It doesn't have the cause, it doesn't have how it was designed, what failure in the design potentially could have mitigated this not happening.
Q. So you would agree with me, as you sit here today, that it's possible, that as part of the development of the school on this property, that a landsiide could occur similar to the

Kilbuck Township landsiide.
A. I would have to say no, not to that extent. A landslide anywhere could happen. To this extent of damage, no.
Q. But you didn't review this report so you don't know what caused that landslide or the damage --
A. It's talking about 500 to 600 thousand cubic yards. This project is not involving 500 to 600 thousand cubic yards of material that could be moved.
Q. How many pages is this report?
A. A lot. You know, the numbering goes to 127. Sorry, 128, but that doesn't include the appendix and everything.
Q. So there are 128 pages plus appendices and you didn't read any of that.
A. No, sir, I haven't.
Q. No further questions. MR. RESTAURI: We are going to take a 15 minute break. So let's resume at about quarter till 11, please.
(RECESS TAKEN))
MR. RESTAURI: Mr. Michae1, you're up.

MR. MICHAEL: That's true.

\section*{EXAMINATION}

BY MR. MICHAEL:
Q. Mr. Phillips, how are you?
A. Good, sir.
Q. I am Tom Michae1, and I represent several of the homeowners, and \(I\) have a few questions for you. You've taken borings that you've discussed, at least a hundred of them have been taken. Do any of those borings give you any data that you can share with us that would indicate where subsurface water would go following blasting and/or development of the site?
A. There were some water readings. That isn't -one of the things during the test boring is they determine where ground water is present in the borings and given there is a sandstone layer and then above that is soil, you know, the rock is hard so the water is going to come out at that level, at that elevation.
Q. And if you broke that sandstone, does anybody
know where the water would go?
A. Not unless you have a crystal ball.
Q. And that's not within your -- you don't have that in your bag of tools?
A. No, I haven't found that yet.
Q. Okay, so as I understand this, and you can correct me if I'm wrong, you have topsoil and below that is colluvial soil?
A. Well, in this particular site you have the sandstone layer which is roughly 70 feet deep.
Q. Seventy feet of sandstone.
A. Then below that you have --
Q. Excuse me, maybe \(I\) said that wrong. At 70 feet down you have sandstone?
A. No, the thickness of the sand is 70 feet thick.
Q. And sandstone is brittle, is that not correct?
A. It's not brittle -- it can be very hard. Again, sandstone -- that's why you have to do additional cores to determine the makeup of it, as to how hard it is. It can be soft, it can be hard.
Q. And if it's hard, you have to blast. If it's soft, there is equipment that you can use, great big graders and buckets with teeth on
them.
A. Right, the size of Tonka toys.
Q. You can use something like that to dig it out.
A. Right.
Q. But we don't know in either case what the effect is going to be if you have to go down and deal with that sandstone layer because it can crack.
A. Yes.
Q. And water -- you'11 agree with me water seeks cracks.
A. Uh-huh. That's how it gets out.
Q. That's how it gets out. And we don't know what the effect is going to be on -- I'm going to point to this on the map. Notice how I raised my voice when I walked over here. That's a lawyer trick.
A. I'11 try to remember.
Q. This is the wetland, this is the school, and down below it are the houses here, and this is where there is a sandstone layer, is that not correct?
A. Yeah, underneath, yes.
Q. Yeah, underneath. So right now, if my basement was dry and my neighbors' basements
are dry, crack that sandstone, they may no longer be dry; is that correct?
A. Possibly, yes.
Q. And we don't know that.
A. No, but we are designed -- if in fact \(I\) am the engineer, we will design to collect any of the water that's coming out of the hillside.
Q. Collect the surface water.
A. And also down below because when we go to build these slopes, we put under drains in.
Q. And you'11 agree with me that when you do this, you're designing as to what's there and what you think is there now, correct?
A. Correct. And during construction, if we encounter different situations such as when they're excavating down, we encounter a lot of ground water, then we will provide design measures to take that water away.
Q. At that time.
A. That is correct.
Q. But in the future it could change, couldn't it?
A. Mother nature has a way of changing things, yes.
Q. And what's the old saying, you can't mess with
mother nature?
A. That is correct.
Q. So we can agree that even though you design something and even though you think that at the time you design it you've cured the problem, mother nature can step in there and screw everything up.
A. Can in any development, anywhere, at any time.
Q. And you've previous \(1 y\) said, well, that's why we have insurance.
A. Well, yes, that's pretty much --
Q. But you're not the insurance company, are you?
A. No, sir, I'm not.
Q. And so you can't say -- you can say we have insurance, but you can't say that they're going to pay.
A. No. I can say that, correct. She wants me to talk louder into the mic.
Q. I understand.
(DISCUSSION HELD OFF THE RECORD)
Q. Okay, so are you aware of the Allegheny County 1ands1ide portal?
A. I myself am not.
Q. It's a website or a site portal that you can go on, on the internet, it's run by Allegheny

County, and it shows where there are landslides or a history of landslides in the county.
A. Okay.
Q. And by your testimony, you would not be aware then that the Borough of Leetsdale and Leet Township, this part of Leet Township, are labeled landslide areas.
A. That, I am -- not that specific site, but there are other -- Pennsylvania Geology publishes material that shows all the landslide areas in Pennsylvania. So I'm aware on the larger scale but not specifically the Allegheny County.
Q. And you'll agree with me that Leetsdale and the slopes of Leetsdale and Leet Township are designated as landslide areas.
A. Oh, yes, pretty much all of Southwestern PA.
Q. And that's because the peneplain, to use a geotechnical term, the peneplain that existed here as an ocean umpteen million years ago has eroded and what we call hills here in Pittsburgh really aren't hills, are they?
A. No.
Q. They're just erosion.
A. Right.
Q. And so all of this mess of geology is the result of water going downhill.
A. Yes.
Q. And it goes downhill on the surface and underneath.
A. Yes.
Q. And you'11 agree with me, won't you, that the subsurface water is as much of a problem as the surface water is?
A. Yes.
Q. Now below the sandstone cap is colluvial soil which just means junk that's washed down and packed in --
A. Well, if you are looking straight down, below that is the claystone, and then the colluvium soils is on the surface, stuff that has slid on the surface.
Q. Above the claystone.
A. No, on the sides of the hill. And that's what colluvium is, it slides down to the tow of the slope and it's uncompacted, non-uniform material, as you say, junk.
Q. It's the result of erosion and weathering and a whole bunch of factors.
A. Right.
Q. So you have clay soil or claystone. Have you ever been to my backyard?
A. Yes, I actually have. Well, not in your backyard, I have been above your backyard when the driliing and surveying.
Q. Did you grab any hunks of clay?
A. No, I didn't grab it.
Q. Are you aware that at that particular area you can take out and dig out clumps of clay as big as your head?
A. I would suspect, yeah, given --
Q. And clay is pretty much water impervious, isn't it? Water doesn't go through it, it goes around it.
A. It goes around it.
Q. And so when you have a clay layer 1 ike that, water is not penetrating, it's siiding.
A. Right.
Q. And right now you can perhaps read from your borings where it's sliding to but you'll agree with me, if you mess that clay layer up, we don't know where it's going to go, where water is going to go.
A. It will change, yes.
Q. It will change. And so just another -- you have got the hard cap of sandstone, then below it you have colluvial soil -- well, below it you have clay with colluvial on the sides.

And below the clay is where you encounter the red stone, right?
A. Yeah, there's claystone and then it goes back and there is another shale layer.
Q. And shale -- red stone is really a shale.
A. It's a sedimentary rock.
Q. And that's a rock that is in layers because it's the result of mud being compacted.
A. And compressed.
Q. A million billion years ago and they made shale out of it.
A. Right.
Q. And it's very strong in one direction but not strong at all in another direction cause it fractures.
A. Right.
Q. And if you go up to Lake Erie and you look at the cliffs that make up the lake shore, you'll see layers and layers and layers of shale breaking into plates because that's what it does.
A. Right, the weather gets to it.
Q. Right. And water gets to it and the freeze that you factor gets to it and it cracks it. And so the shale layer that sits below the clay is horizontally strong, is vertically strong but horizontally weak and it, too, is water impervious.
A. Well, it cracks.
Q. But for the cracks. The material itself is impervious but when it cracks, the water gets in and it follows the cracks.
A. Right.
Q. And the water that comes down and gets on the subsurface clay, it makes that clay slippery, doesn't it?
A. Yes.
Q. So you have got a slippery clay layer on top of the shale layer and if that moves -- well, that's prone to movement, isn't it?
A. Right, that's how it slides is the way the water is absorbed into it causes it to exceed the factor of safety and it will silde.
Q. And at this point we don't know, we think we know how to design it, but mother nature could cause that water to go down into the area that

I pointed out above the houses there and cause that shale to slide -- or cause the clay to slide on the shale because mother nature does what mother nature is going to do and we don't know what she's going to do.
A. Right, she can do anything that manmade makes and tear it down.
Q. And so at this point in time we don't know what the effect of the construction of that school would be or any school would be on the top of that hill. We think we know, but we don't really know. Isn't that true?
A. That's possible. We are going to use our best engineering practices of our profession to design this property, if we are selected or whoever is selected in the profession, to design the property so that it is stable. But as you said, mother nature has their own ways of throwing curve balls. But none of us in any instance can guarantee that. Except death and taxes.
Q. I'm not so sure about death, but I will give you taxes. I'm going to ask you this question. It was testified to by your colleague but I'm going to ask you, and if you
can't answer, I don't want to have to switch players, but we'll try.
A. Okay.
Q. And that is, he testified that the slope design is done for safety purposes. You agree with that?
A. Yes.
Q. But it's really safety purposes and water purposes may be different. Or may have different effects. You may design something for safety and it would be great, but it might screw up the water situation.
A. Well, in his parameters that's what he was discussing, and I can always bring him up, but I will keep it simple if it's not technical, is that saturated soils are taken into account in his software. In other words, the ground water. That's why we need to know where the ground water elevation is, because the saturated soils below act differently. So they are taken into account in the safety factor of the slope. So water is a part of -in control of that, meaning you will enter that information into the software. I can say that much.
Q. You enter it in the software but mother nature doesn't pay attention to the software.
A. A lot of times you're correct.
Q. And we don't know if this is going to be one of those times.
A. No.
Q. That's all I have. Thank you. MR. RESTAURI: Thank you, Mr. Michael. Ms. Turnbull?

MS. TURNBULL: Thank you.

\section*{CROSS-EXAMINATION}

BY MS. TURNBULL:
Q. How are you, sir?
A. Doing just fine.
Q. You're hanging in there. That's all you can do.
A. We are all here to get this information out so everybody can understand.
Q. Well, I appreciate that. And actually, it's one of my first questions is really just to understand a term that we see referenced.

You indicated that you have participated in this project from the due diligence phase
kind of to present; is that correct?
A. That is correct.
Q. And did you prepare a due diligence executive summary as part of that?
A. Yes, I did.
Q. So in that document it states that, quote, while it is impossible to accurately predict mass landslide movement, it is well known that this area is currently metastable -- a word that has never come out of my mouth before so thank you -- metastable or borderline stable due to weather and gravity and surface and ground water issues over geotechnical history. Can you define metastable just for the purposes of our record?
A. I will defer to my colleague to answer that question in more detail level that you would 1ike.

MR. BOWARD: Should I come up?

JOSEPH BOWARD,
having been first duly sworn, was examined and deposed as follows:

BY MS. TURNBULL:
Q. Trying to think of how to do this elegantly otherwise. Yes, please, sir.
A. Okay, when geotechnical engineers use the word "metastable," it's referring to what we consider a factor of safety. I don't want to get too technical but when we look at a slope, the factors of safety is the sum of all the forces tending to resist slope movement divided by the sum of all the forces tending to cause slope movement.

Okay, so if there are more forces resisting slope movement than there is forces causing it, the factor of safety will be greater than 1.0. When the factor of safety is about 1.0, or we say unity, that means it's right on the verge, the forces are roughly equal and that's what we mean by metastable. It's technically stable, but it doesn't take much to cause it to begin to be unstable and potentially begin to move.
Q. So an Oxford definition of metastable, for the lay people, if I read this to you, I will ask you what you think, if it fairly and accurately kind of describes the same
principle.
A. Yes.
Q. A condition of a system in which is or has a precarious stability that can be easily disturbed.
A. That's correct.
Q. So if I'm hearing that correctly, is it fair to say that a minor disturbance in a metastable environment can cause a failure?
A. Well, of course, it depends on the disturbance but, yes, if it's the wrong type of disturbance, it can cause it to become unstable.
Q. So the rock formations on this hillside that we're considering here, in the preliminary plan which \(I\) understand has not been fully designed at this point, is it fair to say that a minor disturbance on this hillside to the rock formation could cause a failure?
A. It's not the rock formation we're so concerned about, it's the soil mantel which is typically the material above the bedrock. That's what we're most concerned about.
Q. And is it fair to say that a failure would adversely affect the downhill neighbors, so
those located primarily in Leetsdale Borough?
A. It can. I mean it depends on where the failure is, what the magnitude and degree of the failure is, but it can have a detrimental impact to the people down slope.
Q. And I think, you know, we've talked about theoretical landsiides. Are you aware of active or active landslides or subsidence on this hillside right now?
A. We are aware of some slumps which are a type of 1 andslide and some sloughs, s-1-o-u-g-h-s, that are more surficial sliding elements. And we are aware that there was a landsitde along the -- I can't remember the name of the road, that access road that went into the Tuh1 property. Wood Spur.
Q. And Wood Spur is located in Leetsdale Borough, correct?
A. Yes.
Q. The tag team. I appreciate that. And I believe \(I\) heard testimony from Mr. Phillips that talked about saturated soils, data collection, that that's part of the exercise here. Has that been done already?
A. We drilled test borings. Actually, we didn't
find much in the way of ground water. We found evidence of isolated seeps and springs, underground springs running through the area. We didn't find within the soil mantel a static ground water table. But one thing is, when we're developing plans or schematic plans or fi11 embankment construction, Geoff described it quite well, we excavate down to competent material which tells you you are moving the colluvial soils and removing the red bed clays that are potentially unstable to bedrock that is stable, and we stair step that into that ground that's stable.

In those stair steps we install drains, field drains. There could be hundreds of drains by the time it's done, depending on the final design. The intent of those drains is if there is any water seeping out of the ground, the original ground we excavated to, the drains will cut that water off before it gets to the field embankment. So we're actually addressing the ground water, potential ground water issues.

It's nice to hope for the best, but we tend to design for the worst case. So we're
adding the drains to try to address the ground water before it gets into the slope and saturates it, reduces its shear strength.
Q. In your professional opinion, would it be necessary to step and to excavate the entire hillside from the top of the hill down towards Leetsdale?
A. Only where we're putting the fill embankment. The portions of the hillside that there is no proposed fill or cuts, there is very little cut, most of this is fill, we aren't doing anything to those hillsides so we're not changing conditions there. They're going to be the same as they are now.
Q. Is it possible that blasting would affect those hillsides and the water even in the undisturbed areas?
A. Actually, it's done per code. There is a Pennsylvania code mostly obtained through the Department of Environmental Protection. There are codes and regulations for blasting. It's performed in such a way -- you have to understand the geotechnical properties of the site. It's done that the peak particle velocity which is the ground wave only reaches
a certain figure so that it doesn't cause structural damages to houses and it shouldn't affect the ground.

Now when we do blasting, we of course have seismographs on the site, too, to actually monitor that peak particle velocity and see where it actually is. That would entail potential adjustments but up front these computations are undertaken to limit the amount of vibration you're going to get during blasting operations.
Q. With respect to the hillside, do you intend to cut that road into the hillside or add fill to create the road or both? Have you gotten -does your design kind of -- have you analyzed that at this point yet?
A. We did analyze -- we had some subsurface cross-sections with the test borings that went up through the road so that was taken into consideration.
Q. How do you intend to address -- how would you recommend to your client, if you are engaged to do that work, I mean to do that and to stabilize the hillside in the area of the road construction, secondary road?
A. It's going to be the same process for fill embankments that \(I\) just discussed, excavating down, removing the problematic materials, adding the drainage and so forth. When it comes to existing hillsides that we are not doing any work on, what you have to do is analyze those existing hillsides in their present state and you add the traffic surcharge from the road onto that because you are adding a itttle bit of surcharge.

If it turns out that that slope is now going to be unstable, factor of safety less than one, you are going to have to take measures to stabilize it. And there is various tools in our tool box as geotechnical engineers to do that. You typically don't go in and excavate it away, you try to stabilize it in place with various measures.
Q. And I understand that there is an effort in the proposed plan to minimize deforestation or removal of trees. But do your calculations take into account the quantity of trees necessary to be removed and how that would affect water?

MR. PHILLIPS: Do you have any
more geotechnical type in depth that Joe might --

MS. TURNBULL: I think I'm okay for now, but \(I\) will do my best.

MR. PHILLIPS: So that's more of the overall water issue that you mentioned of trees, yes, my understanding was part of the reason they picked this property was to keep the vegetation around the perimeter, keep a 1arge buffer. So as far as what is shown on the drawing and what is now the architect being directed to, my understanding is that'S going to try to keep as many of the trees on the property as possible. So as far as the fill slopes and the configuration of the road, that will have to change in order to do that during the design.

\section*{GEOFFREY PHILLIPS,}
having been first duly sworn, was examined and deposed as follows:

\section*{CROSS-EXAMINATION}

BY MS. TURNBULL:
Q. And you testified about the tow of the slope.

Can you talk about what the tow of the slope is and the significance of that on this project?
A. The tow of the slope is the lowest part of a slope where the material gathers and, as Joe mentioned earlier, if you remove that material, then you have the potential to destabilize any of the area above it. So that's why it has to be done at an incremental manner. You can't just go in and dig a hole because the slope is not going to stay on its own.
Q. Is the tow of the slope entirely on district owned property?
A. The proposed slopes are, yes, all the proposed tow of slopes. But the nature of this hill, we're at the high part and the river is at the low part, so it extends all the way to the river.
Q. And the tow of the slope, is it fair to characterize that as a vulnerable area in a landslide prone location?
A. It's one of the factors, yeah.
Q. If there are failures of this hillside, the hillside comes down, correct?
A. Depending on where that, you know, happened. In other words, if it was higher up on the slope, then it may not reach that far.
Q. It might not reach the tow but it's coming down, gravity is helping it move, correct?
A. Yeah, that's what gravity does, the weight of gravity pulling it down.
Q. And the sensitivity, of course, is that there are houses located at the tow of the slope, correct?
A. Well --
Q. Or close to even the proposed tow of the slope.
A. When you say tow of slope, that's usually we're looking at more of a proposed tow of slope. That means that we are creating at that location. Naturally, where a tow of slope is, is usually at the lowest point along that slope which the lowest point along the whole slope is down towards the river which is long past all those houses, now you have smaller slopes where houses were built where they have gone in and cut and filled. There are tow of slopes there cause you are manmade.
Q. So the proposed tow of the slope as it would
be designed in an ideal world, with your expertise, right, do you have a sense of what the distance of the tow of the proposed slope would be from the nearest residential structure?
A. Just looking at the plan there, Mr. Michael's house is the closest one. So I would say it's in the neighborhood of three to four hundred feet away. Because they're actually not proposing a slope, they're grading it up there where the drive is, over to the west is where there is some grading which goes down towards Camp Meeting Road. So to the residents that are in Leetsdale, you know, three to four hundred feet away would be the proposed tow of slope.
Q. There has been a little bit of discussion about the Kilbuck once upon a time landslide and its comparability of sorts to this location.
A. It's sort of like a traffic accident. Not every traffic accident is the same because you have different vehicles, okay. So there are geologic issues that were at that site that potentially could be here. But is it the
same? Not exactly.
Q. Now it's not the same in the sense that there were no houses in between the landslide site and the end of it, isn't that correct? There were no houses compromised.
A. There was a state highway and a railroad track that was impacted down slope.
Q. And in this location the worst case scenario involves potential loss of property, residential property, public roads, right of ways and possibly people, correct?
A. If you are going to describe a catastrophic failure but I --
Q. And you have referenced the Kilbuck landslide in connection with your due diligence in public presentations, correct?
A. That we are aware of it, yes.
Q. You referenced the Kilbuck landslide and the Kilbuck site in a power point presentation to the board and the public.
A. Right, because the public has that in their mind, that any development within the southwestern region is going to end up that way.
Q. In light of the very specific conditions here,
is the safety design different than on your side of things as the engineer?
A. Yeah, we have a safety factor, all the slopes that are being designed to have at least one and a half will be a factor. And as far as any runoff, there are regulations from DEP as we11 as Allegheny Conservation as well as Leet Township's ordinances that we abide by to control any potential increase in runoff from the site.
Q. But do you do anything -- if you were designing for this site versus designing for the Kilbuck site, do you do anything different to account for a potential higher 1 ikelihood of adverse effects to residential properties or to people, to a more densely populated area?
A. Well, it's still the same engineering principles. There was a failure of the engineering that was done at Kilbuck. They did not take the engineering to the level that it should have been done, whereas here we will design to the standard of at least one and a half, meaning it's one and a half times of stability for all proposed slopes here.
Q. Is that going over or beyond the professional standard that would otherwise be required?
A. Well, as a professional civil engineer, we protect the public in our design. We are to do that. And we utilize the tools and the engineering technology that's available to do that. Now is there still failures? Yes, there are failures. We try to minimize.
Q. You had previously testified to some degree about there are cracks in everyone's foundation in Western Pennsylvania and old houses and maybe there will be more cracks, there is insurance. I want to be clear cause it is not your testimony, correct, that Quaker Valley has the right to engage in activities that cause damage to people or to property because they have insurance, right?
A. That's correct. No, I'm just saying that cracks are evident in all houses because there is movement no matter -- as was testified before, mother nature is going to do what mother nature does.
Q. But if we do things as people, as property owners that contribute to that, we become responsible for the change in mother nature.
A. Right, that's the only thing with the insurance is you are a responsible individual, if the problem happens they will be responsible to fix it. They are not saying that they're given the free will to do that, make that problem happen.
Q. You did reference a blasting contractor's insurance coverage and insurance inspections.
A. Correct.
Q. Are those typical precautions or typical things that you would want to see as conditions or as protections for this type of work being done at this site?
A. Correct. That would be within the specifications when they bid the project, that those contractors have that level of insurance, they would do that level of detail, what's called before the incident happens, meaning they do a survey of anything and they install monitoring equipment, seismographs, things like that. They will install monitoring all around the site so that they can minimize any impact that's to leave the site. The insurance is the money end of the thing.
Q. Are there any other specific safeguards to protect downhill neighbors in the Borough of Leetsdale that you would recommend?
A. Well, I can't say right now because I'm not -I haven't been chosen as the design engineer.
Q. On other sites that might be comparable to this, what are the recommendations that you make as the professional to put safeguards in place through grading, through blasting?
A. Again, those are the ordinances that are out there. Those are the state regulations that Joe mentioned that are through DEP at the higher level. So there are all those regulations. It would be a matter of the municipality, when they review the design drawings, that those regulations are adhered to, meaning that those are a part of the specifications.
Q. So you don't have any -- other than insurance, you don't have any specific recommendations that you would make for safeguarding?
A. That's what the whole laws --
Q. Compliance with ordinances.
A. Compliance with all of those. Those are what standards that are out there, you know, to
protect the public. And as a civil engineer, we design all of our designs to take into consideration the public safety.
Q. So throughout this process you've provided advice to the Quaker Valley School District; is that correct?
A. Yeah, we did the due diligence, we made recommendations and specified all the facts, all the information that was available. Our findings throughout the due diligence of what the property holds for all of the items, you know, surveying, geotechnical, civil, review of ordinances, environmentals, to give them the best information for them to decide whether they wanted to purchase the property or not purchase the property. They chose to purchase the property and to continue to develop a new high school.
Q. Do you remember what some of your concerns were that you communicated to them about this site prior to them purchasing it?
A. Well, it's going to have to be a community effort here because you're involving Leet Township, you've got Leetsdale Borough, you've got Edgeworth, three municipalities you will
have to work with. You're also going to have to work with Allegheny County Public Works for the road that they have jurisdiction on.

There are existing issues along that road as far as the water that's coming down along Camp Meeting Road has eroded some of the area there, in other words, taken out the tow of slope that holds up the road. There is drainage issues which have come down through there into Leetsdale with the flooding and everything.

So all of those issues we made aware of to the township, but we also went further and we had meetings with -- and I was a part of -with the county, in particular with Camp Meeting Road, to discuss if they had any plans of how they were going to fix their things. And as government usually says, it got cut out of the budget, we don't have the money.

There is utility infrastructures that have some problems there, the sanitary sewer that runs through there. There are water infrastructures with the water system in this area in the fact that it's not looped, it's single source. In other words, you have a

1ine that's going up Camp Meeting Road and you have some spurs that are coming off over into Oakdale and the community you're talking about houses.

So if you have a water 1 ine break, the water is shut off. If you loop it, that means it has a way to come in another way, you shut it off by valves where the break is but you still maintain water for the rest of the residents. So those are things that are going to have to be a part of this project, working with the utility companies to improve the conditions not only for the school but for the community around it.

Traffic is another issue that came about in the fact that you have a single source road. I mean this municipality only has three major roads. It has Little Sewickley Creek, it has Camp Meeting Road, and it has Big Sewickley Creek. That's the only three main arteries coming into the township. So that's where the volume of your traffic is going to be.

Now the school district has been here for a long time so they already have some
traffic on it, but you are now going to be evaluating with our traffic engineer to make sure that it's going to be a safe road to travel. And there are some improvements that are going to have to be done. Are they finalized? No. There are going to be some discussions with the county and what they can do to help improve some of the stuff.

It's the same way with the drainage that's coming down through there. It's already a problem. It's been identified. I have had discussions with Mr. Slagle, who is the engineer for both Leet and for Leetsdale Borough, and when we went through the subdivision, those questions were asked by planning commission and council in Leetsdale.

And we have had meetings with Allegheny Conservation to look at improving the water, fixing the problems that are there in conjunction. So there are a lot of stakeholders in this project, as I use the word stakeholder, that you are going to work with other agencies to make this a better situation. Not just go out and design something, say, well, there it is. It's going
to be reviewed by many people, and they are going to have their experts review the work. So there are a lot of things that have, on the preliminary basis, happened. But again, we are not the final design. Once we get into final design, then you will have stuff on paper that can be determined.

MS. HYJEK: And in some of those early conversations that happened in the public -- I mean I think you have been very transparent with what the district has done and having many of these discussions at public meetings and power point presentations which is helpful. I mean is it fair to say that you at least at one time had concerns about the excavability of sandstone on this site.
A. Yeah, because of the hardness, whether it could be used with a piece of equipment to dig it or whether blasting. And again, that hasn't been determined.
Q. So do you still have those concerns?
A. Well, we have to determine that. So it's an unknown and that's what we made the district aware of.
Q. And you had concerns with pyrite and
sandstone; is that correct?
A. We did not encounter, to my knowledge, but it is another factor here in Western

Pennsylvania, that it's another issue that does cause problems on a project so we have to do extensive borings to find if there is that problem.
Q. And that's still a concern to be --
A. Right, this was a preliminary. By far, this is not final design and was not enough borings done. It was only preliminary. So that's why we've told them in our report more borings need to be done.
Q. And you had communicated to the district that you had grave concerns about rock outcrops indicating blasting is definitely needed. Is that still a grave concern?
A. Not sure what you're asking there.
Q. Do you recall having a grave concern, I believe in March of 2017, about outcrops indicating blasting definitely needed?
A. I don't know. I know there are rock outcrops, but the only ones \(I\) think are over in the Edgeworth area where it is very, very steep. In other words, the soil has all eroded off of
and exposed the rock over there.
Q. Did you help to prepare the power points that were presented to the district?
A. Yes.
Q. So just to show you where \(I\) am looking, does this look familiar?
A. Yeah. Okay, so the context of rock outcrops indicating blasting definitely needed, we concluded was more on the expense, meaning that if in fact the rock is hard, you're going to have to spend money in order to get it out. So that's evaluation concern that they need to be aware of, that you are not just going to go in and develop the site for very minimal money. You are going to have to spend some money in order to do it. That was the concern was, are you willing to spend that money in order to develop the site?
Q. So that was what you were kind of referencing in that grave concern?
A. Right. In other words, it's a major expense that you are going to have to have in your budget in order to create a developable piece of property here is you are going to have to remove that rock, and it may have to cause you
to do blasting in order to do that. So if you can't spend the money, then this isn't the property to be developing.
Q. And then also in that same section of your power point it identified that you had grave concerns about severe landslide activity definitely adds remedial action to the project, expensive, question mark.
A. Correct, the site has already shown and in the Edgeworth the developer, Mr. Tuh1, which was Three Rivers Trust, had already encountered those issues. So we were just responding that those are already existing issues that are on the property. But the site plan is not including any development over there.
Q. And then the other thing -- and just for clarification, cause again this is a public document that's out in the world, it says, quote, even if Tuh1 donates site, you may not want it, end quote, dot, dot, dot, try to better assess costs of these before further evaluation and dri11ing.

What did you mean by that, when you wrote that? And whose quote is that? Is that your quote?
A. It's a combination. Again, the situation is we were asked not only to evaluate this site but several other sites, so we were putting on the table that this is going to be an expensive site to develop. So, in other words, you're not going to have a budget of site construction of only \(\$ 10,000\) here. You're going to have to spend several milion dollars to develop this.
Q. Do you have a ballpark of what it would cost to do the geotech site development?
A. Well, we put in our estimate there to do the bulk grading of the site to get the 50 acres flat was in the neighborhood of like 21 to 23 million dollars. And that just gets you the grading. It's not putting in infrastructures or any of the other site facilities that need to go with the development.

It's similar to the industrial parks you see built in Southwestern PA. They go in and do the bulk grading, do the infrastructure, put all of that in, in other words, have lots that are what they call ready build for developers to come in and develop.

So we indicated it was a significant
amount of money you're going to have to spend. So not only are you looking at that expense, because that's what happens, somebody will say to us, oh, I got this property real cheap to develop, okay.
Q. And you want to make sure that they really want it.
A. Just cause you got it cheap doesn't mean it's going to cost you cheap to develop it. And that's sort of where that came about. You're still going to have to spend a large amount of money to develop it even if it was given to you.
Q. Thank you for your time. I don't have any further questions.
A. Okay.
Q. Thank you.

MR. RESTAURI: Thank you. Ladies and gentlemen, it's 20 minutes to noon. I can start my questioning or we can break for lunch and come back around 12:30. I think I'm probably going to be 45 minutes to an hour, maybe shorter, hopefully. What's your preference?

MR. SOSTER: Why don't we break
for lunch whenever you are done?
MR. RESTAURI: Fine with me.
MR. SOSTER: Let's get it done.

\section*{EXAMINATION}

BY MR. RESTAURI:
Q. Mr. Phillips, one of the things that we wrestled with -- and I understand your counsel may think it's beyond our scope -- but one of the things we wrestled with is that we're being asked to decide how much risk is an acceptable risk to put hundreds of school kids in at the top of a hill that's landslide prone when 10 or 15 years ago, not too far away, Walmart, with all its money and all its engineering, couldn't stop a landslide.

So I tell you that just to give you some perspective, so you are not thinking that we are just asking questions for no good reason. This is a concern. Is there some standard in your profession that says that it's an acceptable risk of a landslide for a school to be 1.5 or 2 or 1.25 in the slope analysis?
A. No, the engineering does not stipulate and
reference the type of risk. As I testified earlier, we are to protect the public with the design, just as you lawyers are to do your job to a certain standard but every lawyer has a different standard that they meet in different states.

So the only thing is, there are regulations that are out there to minimize the risk. To what degree of a number, there really isn't, other that in our engineering practice the 1.5 is the acceptable risk factor of design for a new slope.
Q. And that's true for whether the building is a Walmart or is a school or is a gas station.
A. That's correct, or a residential home development or you know --
Q. There has been some testimony this morning -and, Mr. Boward, if you want to answer these questions rather than --

MR. BOWARD: Could I expound on
what he said?
MR. RESTAURI: Sure. Joe, if you
want to sit close, both of you can take whichever answers or questions you want, please.

JOSEPH BOWARD,
having been first duly sworn, was examined and deposed as follows:

\section*{EXAMINATION}

BY MR. RESTAURI:
A. Okay, first of all, the factor of safety of 1.5 we are using is really the global standard of care. Most of the United States factor of safety 1.3 is used. The reason why geotechnical engineers in this locale use 1.5 is because of the landslide prone nature of many of the areas in Southwest Pennsylvania. So we as geotechnical engineers in this locale have increased the standard of care to account for the conditions in Southwest Pennsylvania.

All we can do as geotechnical engineers is follow a standard of care. Actually, we cannot say we are exceeding the standard of care. Our insurance companies will not insure us.
Q. So it is possible, however, to exceed the 1.5 slope standard of care?
A. Yes, it is. As a matter of fact, when we
conducted our slope stability analyses for the due diligence phase of this project, our lowest factor of safety is 1.5 on slopes. Some slopes were as high as 2.5.
Q. And is it possible to translate 1.5 into a percentage 1 ikelihood that there would be a landslide in a hundred instances or a thousand instances? If you have a thousand properties or a hundred properties -- let's say a hundred properties, all of which had a 1.5 slope factor, would five of them fail and be a landslide? Ten? None?
A. The factor of safety used in geotechnical engineering does not correlate well with that type of statistical analysis. If you have a factor of safety of 1.5 , what that's saying is that you have forces resisting slope failure that are 50 percent greater than the forces tending to cause it. If your factor of safety is 1.5, if it is truly 1.5 , the slope won't fail. I mean that is -- engineering wise, that is what that's telling you. If something else happens within the slope that you could not account for based on your analysis, then you may have a slope failure.

The one other thing \(I\) wanted to point out was, \(I\) am familiar enough with what happened to Kilbuck. I happen to know the engineer there did no slope stability analysis. There was no analysis that we are talking about here done.

I also happen to know at that time Walmart did not own the property. It was a developer condition. There was a developer, ACS, who owned the property and was developing it. The idea was they were supposed to develop the property up to a flat pad in correspondence with Walmart's requirements and then Walmart would buy the property from them and build their building.
Q. I see.
A. The other thing you have to keep the mind -and \(I\) almost hate to say this in public record but it is public knowledge -- the developer ACS was owned by a person, partially owned by a person that also owned the geotechnical firm that was working on the property. And the geotechnical firm on the property had individuals out there doing construction, inspecting the geotechnical aspects. So in
essence, the developer was inspecting his own work.
Q. When you did your work after the 1 ands 1 ide, did anyone conduct a slope analysis then or was it too late at that point?
A. Well, slope analyses had to be done. First of a11, to understand where it was in regards to its movement. Cause it moved for quite a long time, for years, quite frankly. And then slope stability analyses had to be conducted to determine how you're going to fix this. Cause whatever fix you come up with has to have a factor of safety of 1.5.

They went to some extraordinary measures to fix that. It's my understanding they spent in excess of 50 million dollars to fix that landslide. So, yeah, slope stability analyses were performed ultimately for the fix.
Q. Knowing what you know now -- and I understand your testimony and respect certain things would be inappropriate for you to say -- but please try to understand what we are trying to wrestle with. Is there something that could have been done there at the Walmart site that wasn't done that you can or would recommend be
done here to make sure it doesn't happen again?
A. At the Walmart site, I'm familiar with test borings were done after the slide occurred. And we found something in the order of \(I\) think almost a hundred feet of colluvial soil under the site that had not been removed. So the site was being constructed on top of an old landsitde. And there were red beds in there, of course, as we11, red bed clays that had not been removed.

So they were trying to construct, I don't remember exactly, I think 75 foot high fill embankment on top of an old landsitde. So you are surcharging an old landslide which is not stable to begin with, an old landslide, reached some point of equilibrium, so now you are adding a surcharge which drastically decreases its stability.

So they should have removed -- well, it probably would have been impractical to remove al1 the colluvial soil in that case because it was so deep and so thick. But other measures could have been taken such as retaining walls in that particular case. Retaining walls are
very expensive and of course nobody wants to go to that expense if he can get away without doing it, especially if you are a geotechnical engineer that is recommending how to stabilize a slope and also the developer.

So they could have taken measures there to provide a stable condition. In that particular case, it would probably have entailed retaining walls. In this case, the colluvial soils and the red bed soils aren't so deep that you can't remove them. I think the very worst case is 40 foot deep.

A lot of the site has roughly around 10 or 15 feet of this material has to be removed in depth. So this site it is practical to take measures to remove those landslide susceptible soils and begin on material that is stable bedrock material.
Q. Joe, what is the \(1 i s t\) of -- without regard to money, without regard to cost, what is the 1ist of everything you can conceivably think of that would minimize this risk of landsiide to that school? Even if you say to yourself, you know, it might only happen once in 250,000 times?

Can you give me the menu of what's out there for you and tell me how it reduces the residual risk? I'm trying to get this risk down to zero, and \(I\) know that that may not be possible, but for heaven's sake, you know, let's get it down as close to zero as we can, please.
A. There are multiple factors, okay. One factor is to remove the 1 ands 1 ide prone material down to competent material. Because when you build a fill embankment, the bottom of the tow almost acts 1 ike a foundation for that fill embankment. So we need to get down to good competent material that has high shear strength, has high strength factors. That's number one.

Number two is to undertake measures, try to bond the new fill as much as you can to the existing material, subsurface materials. That is the stair step benching we're talking about, okay.

Number three, let's try to keep the fill embankment as dry as possible because when your slope becomes wet or saturated, its shear strength is reduced. Just think of picking up
a hard clump of dirt that's pretty dry, you squeezed it, you can't necessarily break it but now it's saturated and it's mud and mush in your hands, doesn't have much strength.

So you want to keep it dry. That's why we're including on those stair step benches every single bench has a drain running along it. So any water that happens to be coming through that hillside above and beyond the new fill embankment we are building, those drains are going to cut it off. It will hit the drains before it percolates to the fill embankment.

So we are keeping it dry by adding all this drainage. Whether or not there is ground water or not, we are adding the drainage cause what you encounter during excavation is not necessarily what's going to happen all year. During the rainy season, there might be springs you are not seeing so we are putting drains in there to cut off any potential water.

The next factor is how you place the fill. The fill has to be placed in layers. They call them loose lifts. It has to be
placed in layers that are adequately thin, that the construction equipment, the compactive energy from the construction equipment is adequate to compact those layers to a certain density.

We have to understand, what does that density have to be compacted to? Cause we want to be sure that density has that shear strength that we require as per we did on our slope stability analysis. So we had to enter factors in for strength, of course.

So we have to understand what density do you have to have to get that minimum shear strength? So it's placed in layers, each layer is compacted. Usually, the layers are six or eight inches. Each layer is compacted and then density tests are taken by geotechnical personnel on the site during --
Q. As it's being done?
A. As it's being done. And the geotechnical personnel there, if it's done correctly, are there full time watching the fill go in, making sure it's put in the thin ifts, making sure the fill is representative of the testing you're doing on it. Because if the character
of the fill changes, these density tests won't mean anything cause it's a different material. If that happens, you have to go back in the 1ab, run more tests to get the baseline results that you need.

But we do density tests with a what's called nuclear densometer. But we have that equipment that has a computer that can tell you the density and water content of the soil because it has to be certain content imits. I will not get into all the technicalities. But we have to test that while it's being placed.

The final factor is being sure that the final slope grade that is constructed is in accordance with what the plans show and in accordance with what you analyze. If you analyze a slope that was a grade of two horizontal to one vertical, in other words, for every two feet horizontal it rises one foot vertical, that has to be constructed to that grade. If they construct it at a slope of 1.5 to one, you may have a problem.

So that has to be verified. And that's usually per survey as it's being done. Those
are the main -- those are the main elements that go into being sure you have a stable slope.
Q. Would a retaining wall, not a fill embankment but a retaining wall, add further security?
A. Not necessarily. It depends on the type of retaining wall you're putting in. There are certain types of retaining walls that actually you wouldn't want to use them because they can actually add load to the slope and not really stabilize it.

You would need a retaining wall that's really supporting tow of the proposed slope, that's adding resistance to the tow of the slope. You are going to get a higher factor of safety but it's not -- you're spending money unnecessarily. It's like a belt and suspenders. Cause retaining walls are very expensive and if you can't remove the poor material, the foundation material for the fill embankment, then you have to consider a retaining wall. In this case, we are able to do that and get these factors of safety.
Q. If these factors that you mentioned, not the retaining wall but the other factors, are all
done, can you offer us an opinion of what the residual risk of landslide would be?
A. I can't quantify that. All I can say is that in my experiences over approximately 40 years in this profession, if these factors are properly implemented, carried out, I have yet to see a landslide occur on a slope that has been constructed in this fashion.
Q. Is there a monitoring regimen that would help with respect to landslides, you know, every six months during the first year, every nine months during the second year, and so on?
A. Yeah, there is -- typically, it's not undertaken if you have gone to all these measures we are talking about, but there are ways to monitor hillsides. They include such things as surface monument, survey monuments that are inserted into the ground, and then the survey data on the monument is undertaken in the three dimensions. And you can do that periodically, once a month or couple times a month or however long you want to do it, a year or two.

The other method you can undertake is what's called a slope inclinometer. You can
look that up online. What that entails is drilling a hole vertically into the ground and there is a special casing that's inserted into the ground all the way down usually into bedrock and then you can insert instruments into that casing. It's a special instrument. It's attached to a cable and you have a computer specially designed for that instrument and you take readings at intervals along that casing. What that tells you is like if you take a reading one month and wait two weeks or wait a month and take another reading the next month, you're going to see variations. You will see a graph that shows variations vertically to see if there is any movement of the slope and how it's moving, how much it's moving. That can be done as well.
Q. Is it possible to have a school like this built in such a way to allow it to accommodate some measure of unexpected landslides? You know, it's almost like the old earthquake thing that \(I\) read about all the time, areas that are earthquake prone built differently.
A. There certainly is. Landslides in this area
predominantly occur to soil mantel. There are rock falls, but those are along usually highways where the rock has been cut very steep, sometimes vertically. We are not talking about that here. We are talking about a landslide in the soil.

So if the school is supported on foundation that extends directly to bedrock, if the soil mantel fails, it's not going to affect the school because the bedrock is not going to fail. And there is a good chance that's going to happen at this site because it isn't very deep to that sandstone cap everybody is talking about.

If you build the school up -- there are ways to protect it there, too, more expensive ways. You still want to support it on bedrock so what you do is you drill a vertical cast in place, concrete fill drilled shaft, also colloquially termed caissons. Those are foundation systems, deep foundation systems. They will go to bedrock.

So the school is in essence -- as far as subsurface wise, you are not going to see them, but it's sort of on stilts extending the
bedrock. So if the earth were to siide, it's going to siide under and around these caissons and not affect the building.
Q. So it is possible to make certain that this school, if it's built, is built either directly on bedrock or through the use of caissons supported by bedrock?
A. Yes, it's possible.
Q. I'm assuming there are going to be gas ines underground, electric 1 ines underground. Is there some way to manage or engineer the placement of those 1 ines so that if there were a landsiide, they would not be compromised? I'm concerned about fires, explosions.

MR. PHILLIPS: Right. So the
utilities would be coming from Camp Meeting Road. So essentially, if you look at the diagram of the site, they would follow along the road which the road is coming along the ridge. So they are not being built over fill material. They are being built in areas that are caught which is in the rock area. So the gas, the water and electric would be coming through that area.

The only utility that will not --
and it's not a catastrophic other than the smell -- is the sanitary. The sanitary has to go down the hill towards Beaver. What it is is Camp Meeting, the sanitary is down there.

\section*{GEOFFREY PHILLIPS,}
having been first duly sworn, was examined and deposed as follows:

\section*{EXAMINATION}

\section*{BY MR. RESTAURI:}
Q. So the assurance that we have is that if there is a landslide, it will not cause an electrical catastrophe or a gas catastrophe.
A. The risk is very minimal.
Q. So if we can summarize it, how would you say that risk is so very minimal? What is the condition --
A. It's being installed above the rock mantel -bedrock surface.
Q. So if there is a slide, because it's underground and above the bedrock surface, the slide would not be heavy enough or would not displace the soil that's above those lines?
A. That is under those lines.
Q. That is under those lines.
A. Yeah.
Q. How do we make sure that the earth coming down in a possible landslide doesn't somehow get to those lines and cut them or burst them?
A. Well, what you have is you have a ridge like this and below that ridge is the rock, and you're going to take this material off the top in order to develop that. So essentially the flat area that you see up there is all going to be on rock.
Q. And where will the lines be?
A. The utility lines will be in that area, not off the edge of the slope. So essentially, just like Joe indicated, unless you are building a fill which there is no fill, they are not showing any lines there, those lines are going to be over the bedrock. So there really isn't a substantial amount of material under it that would allow it to slide.
Q. And material coming down on top of it wouldn't get to it.
A. Right, cause there is no slope above it.
Q. In your experience, where that technique has been used, are you familiar with any instances
where the electrical lines have been compromised or the gas lines have been compromised despite those best efforts?
A. Not in any of the developments in the last 35 years I've been involved.

MR. RESTAURI: Joe, agree?
MR. BOWARD: Yeah, I agree. Not if you -- now if you undertake measures less than that, of course, the risk increases.

BY MR. RESTAURI:
Q. Unless your counsel objects, I'd like to ask both of you, as you leave here today, if you think of other things that you say, I should have said this, I should have said that, this might help, that might help, we have a while to go before we make a decision. If you would let us know and we will let counsel know. You know, what matters to us is that we get this right.
A. Right.
Q. We know it matters to you, we know it matters to all of you. We don't stand -- we are not standing on legal technicalities. We have kids we are putting up there. We all know that, okay.
A. Can I make one comment there?
Q. Sure.
A. And I think the township has already done this, but I'm not fully aware, is there are two sides to this. There is our side where we design it but then there is the municipality side where they review it. And as long as you have all of the geotechnical engineers on board to review all of this stuff, that's somewhat what didn't happen at Kilbuck. You sorta had the fox in charge of the chicken coop and you had a developer who was money driven.

This project is a public project, meaning it's for school, it's for kids. The district is not going to cut any corners because of costs in the design to make this safe for the public. However, if the municipality has in their professional side people to review it and give good feedback, then we can minimize any problems of not covering to minimize the risk.
Q. And I think I need to be clearer than maybe I was. I am not suggesting that the school district did not care, wasn't concerned as
much as we are. This is one of those situations where the more heads that are on it, the better.
A. And we agree.
Q. So I am not at all being critical of the school district in any way.

MR. BOWARD: I have to say
something, too. The element that we just covered that should be undertaken during construction to provide for a stable fill embankment, fill slopes, we haven't gone to the design phase yet so there is no specifications written, there is no reports, no final geotechnical reports from us, assuming we were engaged to perform that.

But if I were to be engaged for that purpose, our reports and specifications, everything \(I\) just said would be included in there that has to be done by the contractor. And I would recommend that our personnel be out there full time during all earth work operations. That is a standard recommendation from us.

In fact, we go as far as to say that if we're not out there, we are not going
to be held responsible. Whoever is out there inspecting it has to be ultimately responsible because they are uncovering subsurface conditions, they are seeing what's actually being done.

Geotechnical engineering is a two part process. There is test borings and so forth, analysis and design. That's the first part. The second part is the actual work in the field which is just as important as the front part. So that would be one of our recommendations, that that all be undertaken.

MR. RESTAURI: Thank you. Joe, your software you were mentioning, is there a standard margin of error in that software that is concerning at a11?

MR. BOWARD: There is not really a margin of error. It uses a technique. There are several techniques that undertake it. It uses the Bishop circular failure method mostly cause that's the type of failures you see out here. And it undertakes -- it siices the slope up into pieces and adds forces.

I go so far back that \(I\) actually had to do this by hand back in the seventies
and eighties, before computers were out there. But it undertakes the same process we used to use by hand. In fact, there is less error now because the computer is doing it and I'm not making multiplication mistakes and so forth like when I did it by hand.

So there is not really a margin of error. The biggest error, if you are going to look at an error, would be human error in putting the wrong data in, whether that be topographic data or physical property data for the various strata.

MR. RESTAURI: And that's the same kind of human error that might arise in the way test borings were conducted, for example.

MR. BOWARD: Yeah, I mean there is a chance of human error there, too. However, when we did the test borings, we didn't let the contractor do them. We had a geologist or engineer out there full time when the test borings were done. So we could see them and classify them.

So we do what we can to reduce the error. Then the samples come back to our laboratory and I get a chance to look at them again to see what their logs say and see if I agree with it when I take a look at the samples.

BY MR. RESTAURI:
Q. Shifting gears --
A. Just one other thing that brought to mind is you, as a municipality, you know, not only should have geotechnical on board, an engineer, but also they should be out there also throughout construction to monitor, too. In other words, it's not just our word. That's another way of doing it.

In most large projects we encounter we, as the design engineers, are out there monitoring it to make sure that the contractor is building it properly, but the municipality or the government agency also has their inspector out there. So that it's another, as you mentioned earlier, another set of eyes on it or heads on the project to observe that everything is being done to the best care that can be for the public safety.
Q. Is there any other layer of during construction inspection or eyes on it that customarily happens or that you would
recommend even if it's unusual because of the situation?
A. There is testing. In other words, what Joe mentioned. In other words, in the specification it requires the contractor to provide soil testing which he then -- what he's going to be placing, and then those parameters come. But sometimes during construction, if it rains more than not, those characteristics change. So the testing part of it is another aspect of those soils.
Q. In your experience, is there a way to write into the bidding specifications for a lot of this work? Specifications that you have seen pass level muster to make sure you are getting good people out there to do this and that, in addition to your inspections, you're starting with people who are well experienced, have been through these kind of things before and know what in the world they're doing.

MR. BOWARD: I am going to let Geoff comment on that, too. But when I prepare bid specifications, I have pre-qualification requirements, a whole form within the specifications that they have to
fill out and be reviewed. So we have that. Unfortunately, at least in my experience, there isn't a whole lot more to do because it's a public bid.

MR. RESTAURI: Right.
MR. BOWARD: You know, it becomes difficult because of all -- I'm not an attorney and not going to claim to understand the law, but \(I\) know there are legal ramifications with looking at these bids and who you accept.

MR. RESTAURI: Right. That's why I said if it passes legal muster.

BY MR. RESTAURI:
Q. With respect to the Walmart project, is there anything else that went wrong at Walmart that you are able to tell us we should look out for here? We understand the ownership interests and the failure to take the slope measurements. Anything else we learned or should have learned from Walmart that we can take into account and try to make sure it doesn't repeat here?
A. I'm not intimately involved with that project. Maybe Joe and his partner, Doug Beitko, who
was going to testify but couldn't, is what we've just explained is the inspection side. I don't know if Kilbuck had a geotechnical on board and whether they were relying on the design and the developer's expertise only which was a bad thing. They should have had their own inspectors and their own professionals checking that out to make sure that the borings were done deep enough and to question the potential silides. MR. BOWARD: I provide
geotechnical engineering consulting for many municipalities as a geotechnical engineer -Moon Township, Edgeworth Borough, Monroeville, several others. So when these municipalities receive a geotechnical report for a development, even for somebody putting an addition onto their house, it's usually sent to me for review. And on behalf of that particular municipality, I will review it and send a letter of concerns that should be addressed.
It would behoove the
municipalities to undertake the same effort to have a civil engineer and geotechnical
engineer on board to review documents coming out for the school system. I can add that.

MR. RESTAURI: Okay. Shift gears.
No, let's stay on this a minute.
Was it your testimony previously that there is really no place in the Quaker Valley School District that would produce less of a risk than the site selected here for landslides?

MR. BOWARD: Red bed strata are very prolific throughout this area. On the lower laying regions next to the river, for instance, you're not going to encounter red beds, but you have a whole host of other problems that limit what you can do. There isn't a lot of land on the lower levels. In other words, bases of some of the valleys and along the river that appear to be, at least based on what the school district asked us to review, appear to be adequate nature for this development. I will let Geoff add to that.

MR. PHILLIPS: Yeah, when you get down to what is seemingly flatter ground, now you have flood problems to deal with. So you have different other major concerns that
happen there.
What happens is you are at the low point so that's where everything is eroded down to so now you have very soft soil so your foundations become very deep and expensive. So you sort of trade one extreme to the other. But there still is some risk in any development that you do. Mapping wise, throughout this whole district and Leet Township, Leetsdale, Edgeworth, it's all got the same stability problems no matter where you develop.

MR. RESTAURI: And is that true no matter how high you are? For instance, I understand the difference between being at the top of the hill and being down in the valley. But what if you found a spot where you were midway in the hill, not as high? Would that make any difference?

MR. BOWARD: Yeah, in other words, if this site was to just develop the very narrow piece at the top of the hillside which probably would just be a few acres and not get out into the slopes whatsoever, then your chance of causing a 1 ands 1 ide, of course, is
reduced. There is still a chance of a landslide. You are not going to get away from that.

In fact, you will have more chance because the fill areas we are putting in here, we are actually increasing the stability of those areas. So those areas will be more stable than they are now. But you would be so limited on the area you could actually develop, you can't get a nice pad to develop when you try to do something like that.

MR. PHILLIPS: Plus, if you
develop midway down a slope in order to have a buildable area, you are going to have both a cut and fill so you will be cutting back into the material that potentially is unstable. So you are going to have to put a lot of retaining walls and the same thing on the lower side, you are going to be filling out so we're on top of the hill, so we're taking some of the top off. But in order to build the roads and some of the other ancillary development parts, they're built on the slope so we need to stabilize the slopes.

MR. BOWARD: And, actually, cut
slopes are often worse than fill slopes with respect to stability cause you can't really engineer them. You are cutting into original ground and you are leaving the original ground exposed. So what measures can you take? You make flatter slopes. Instead of two-to-one, make it three-to-one, four-to-one, five-to-one, and you build retaining walls to try to stabilize them. So cut slopes can be a problem.

So if you build at the base of a valley where there is no red bed directly under the school, if you have to -- if you cut into the sides of the valley, the flanks of the valley, you are increasing the risks of landslides occurring and falling down into the developable area.

MR. RESTAURI: I want to shift just a second to blasting and drainage. The blasting that was discussed this morning, worst case, give us the worst case of how many people or how many properties would be impacted by noise and debris. Are we talking about hundreds, just several who are important of course nearby? I want an order of
magnitude here.
MR. BOWARD: If blasting was
required, which we don't hundred percent know yet, that would be part of the analysis. I can't give you a figure right now. That would require engineering analysis.

But as I said before, blasting is regulated by a lot of codes. There are certain blasting delays, certain charge weights, and when blasting is done it not like you see on TV. If you do it properly, if you do it properly for a development like this, there is no fly rock. If it's done properly, what they do is drill a grid pattern of holes into the ground, into the bedrock. Cause you can excavate away the soil, grid pattern of holes that goes so deep and they put charges in each hole and the charges depend on a lot of factors--the depth of the hole, the amount of material you are trying to remove in one plain, the properties of the rock, and then it's all set off at once. Typically, if it's done right, what you see is the ground do this (indicating). That's it.

The idea is you are breaking up
the surface several feet, anywhere from two to five, six feet of the rock. So now they can go in with the equipment and scrape it off. It's all broken up.

That's what the intent is. The intent is not to go into like you see some quarry on the Gunsmoke show where they are blowing rock and rock is flying everywhere and people are running behind trees. If that happens, that is not properly done, not in accordance with regulation. If there is an engineer involved, he is negligent.

MR. RESTAURI: And the blasting, even as you described it, I assume, please tell me if \(I\) am wrong, it's your professional opinion that would not itself cause 1 ands 1 ides?

MR. BOWARD: If it's done properly, it would not cause landslides. But you have to analyze it in advance to understand the vibrations you're going to get from it and understand the properties of the soils around it. If it's improperly done, yeah, it can cause landslides.

MR. RESTAURI: And how often in
your career, if ever, have you seen it improperly done such that landslides were caused?

MR. BOWARD: None of the projects I have been involved with, but I am aware that along the parkway, the Ikea store, they had to blast rock there. And this is what \(I\) heard through the grapevine, the engineering profession, but they had done something wrong there, not sure what it was, but there was fly rock that flew out on the parkway and hit some cars.

So they did something wrong there. I'm not sure what it was. You should not have fly rock ever. It should just 1 ift the ground up, you see the ground 1 ift up maybe a foot or two and come right back down and it's broken the rock up.

MR. RESTAURI: What could be done to maximally ensure that it happens the right way and not the wrong way? It's a Joe event, not an Ikea event.

MR. BOWARD: You do the test drilling, you do the geotechnical analysis, you run through the computations to understand
what you need in the way of charge weight and so forth.

MR. RESTAURI: Joe, who is the "you" do that? It's not the contractor or is it the contractor and --

MR. BOWARD: Contractor can do it, but he has to engage a professional engineer to do it on his behalf. If that happens, I would recommend whatever that professional engineer comes up with, it be given to say the municipality engineer, geotechnical engineer to review to make sure it's adequate and do what I said, review it and potentially put a letter out with concerns or comments that have to be addressed.

But, yeah, it has to be done by a professional. And the contractor would actually do the work, the means and methods. And the engineer is on site while that's being done, typically, unless you are out in the middle of a corn field and there is nothing around. But seismographs would be included in that and you would get the data from those seismographs and correlate that with what computations they have given you.

MR. RESTAURI: Anything from you, Geoff, on that?

MR. PHILLIPS: Yeah, as far as the blasting, they are not blowing out a huge amount of rock all at once. They'11 go in and drill down only so far, crack that up with a blast, remove it and then do more drilling if need be. They are not trying to do it all in one shot.

MR. BOWARD: Done in layers.
MR. PHILLIPS: It's done in
1ayers. The same way that we put the soil back, it's done in layers so you are not having to use heavy charges and not having any material fly away.

MR. RESTAURI: On to drainage.
Worst case, how many people, houses, properties are impacted if this is done wrong?

MR. PHILLIPS: We11, may \(I\) just explain if the initial intent of the drainage for this project -- again, unless I get hired to do it -- but any civil engineer, to meet the requirements and what the site plan is showing you, is to collect all the water, surface water, meaning rain water that hits
the ground, up on top, filter it through bio retention gardens, and what those are are little puddle areas where it allows the sediment and the oils and greases to settle out and filter the water, then it will go into a storm pipe system which will be taken over to the west to a detention facility to be built near Camp Meeting Road. And that detention facility will hold the water and release it at a certain rate so that it does not flood out the areas down below. And that's designed up to a hundred and including a hundred year storm.

The other thing, too, as John testified, that because there is no detention facility for all of the development that has taken place to the west, northwest of Camp Meeting Road which is the Quaker Heights I think they call that, that water comes running down through there and underneath Camp Meeting Road and down along Camp Meeting Road, that that would be taken into account in the calculations so that it can be minimized, the amount of water that is coming there, down towards Leetsdale Borough, whether it's piped
from there down to the highway and along the highway and obviously gets into right near where Little Sewickley Creek enters the Ohio River.

The other thing, too, in my due diligence meetings with Allegheny Conservation, they have taken grants, gotten grants to improve water sheds in Allegheny County, and the director and assistants and their staff we met with said they would be willing to be a part of that in this particular case. So as far as any of the surface water, it's going to get collected, it's going to be directed to a proper facility, it's going to be controlled with a proper facility and released so that it does not overload the system that is already in place that goes underneath Beaver and all the way down.

The biggest part of that is that all those sediments that are coming down along Camp Meeting are clogging that system up now. It's not open to its full capacity. The other factor is down at 60 where the main highway is, the water has to make a 90 degree turn and
that's not efficient. In other words, what happens there is you lose a lot of the water energy and what happens is it actually slows it down and impacts it so much.

So if we went in there and
reconfigured that location to get the water to go in a more smooth path around, that would be another factor that we would analyze. That's only the surface. The subsurface we are talking about is the other part Joe was mentioning is we were -- all of the slopes that are being proposed will have subsurface drains along it and they would then be connected into this detention facility to take it and properly handle that water.

There's also been -- in our
investigative due diligence report we identified numerous springs. There are springs up there. So those would be taken into account as far as the collection of some of those to improve drainage from going down and off of the property.

By us sort of putting a cap of
pavement on top of the hill and collecting that storm water, that ground water that's
coming out, we're actually cutting off some of that source. Because that's how ground water is, is it's the surface water percolating down to an impervious layer such as a rock layer, the clay layer, as Mr. Michael mentioned, and that's where then the water comes out.

So those are some of the measures
that can be designed in this project to minimize drainage to the downstream and off property, down gradient and other properties off site.

MR. RESTAURI: What's the margin
of error or margin of risk that some of your assumptions and analyses are incorrect?

MR. PHILLIPS: In what respect?
MR. RESTAURI: That you are making
underlying assumptions about mother nature, about --

MR. PHILLIPS: Well, any
calculation, as Joe mentioned, there is software that is used, you are trying to put numbers to mother nature. And therefore that's the science we have and that's the engineering we have that's available. So that's the best that's available that we can
utilize to minimize the risk.
MR. RESTAURI: So the state of the art is telling you that if you do these things or the school district does these things, there will be minimal risk of something different happening than what you've described.

MR. PHILLIPS: Correct. But that doesn't mean mother nature doesn't throw us a curve ball. Just 1 ike these storms. We don't have just a normal rain anymore. It comes in and dumps.

MR. RESTAURI: You raise an
interesting point. So I remember -- used to be when \(I\) was a much, much younger man, we talked about the hundred year rain. Now I don't know what we're up to.

MR. PHILLIPS: Well, if you ask
news people, you know, a lot of times they were saying that was a hundred year storm, that was a hundred year storm. Now you see that was a 99.9 year storm because the hundred year storm happened last year, now we have another one this year.

MR. RESTAURI: So what do you
design to, the hundred year storm now or 500 year storm?

MR. PHILLIPS: You design to the hundred year storm for developments on these sites. The only reason you would go to the 500 is that we were down in the flood plain and, therefore, you would need to know what level that 500 would be.

MR. RESTAURI: And that's standard practice?

MR. PHILLIPS: Yes.
MR. RESTAURI: In your profession?
MR. PHILLIPS: Uh-huh.
MR. RESTAURI: Is there anything else about the blasting or the surface or subsurface drainage that would manage the risk in addition to the things you already said?

MR. PHILLIPS: I can't think of any at the time, but if we do, we will let you know.

MR. RESTAURI: Yes, that would be much appreciated. Mr. Chairman, I think I'm done. It might be a good time to break and then come back. If I have anything, I can ask a question or two more but then we go to you.

MR. SOSTER: We will be back at 1:30? Is that enough time?

MR. RESTAURI: 1:30 should be good. Thank you very much.
(LUNCHEON RECESS TAKEN)
MR. RESTAURI: I have no further questions. Mr. Soster?

EXAMINATION (of Mr. Phil1ips)

BY MR. SOSTER:
Q. What we will do now, Geoff, let the board ask and we will take them one at a time. And I'm going to direct my questions to you, but I'd like Joe to answer, too, in sequence.
A. Okay.
Q. You were the site engineer, you're a civil engineer. You've done other school issues such as site preparation or is this the first time you have done this?
A. No, I have done other schools in the area. McKeesport, Gateway school, I've done some over in Ohio, Macedonia, Nardonia Hills.
Q. Do you do residential site development?
A. Yes, I have.
Q. For developers?
A. Yes, I have.
Q. Did I hear your testimony that it's your opinion that the site development for residential homes would take the same amount of work as this school?
A. Yes, it should, but working with developers, they're always trying to minimize costs so they will try to do the minimum. They would not spend the amount of money on borings that we have done to determine what actually needs to be there.
Q. And again, \(I\) know you don't have the benefit of analysis, but if \(I\) could ask the question, you can say that you can't answer it. You're stating that the site development for this school, to build housing with AAA zoning housing, would take the same -- you would remove the colluvial soils, you'd go down to bedrock which would be the same site development?
A. I'll let Joe answer that. MR. BOWARD: If it was a residential development -- of course, it depends how the layout is going to be in the
end, as to what they would do rating wise. But let's just say they were going to have similar layout, at least with respect to the ground surface, not the buildings.

My experience -- and I am an
expert witness on several cases right now where landslides have happened in residential developments, I'm an expert, is that the developers typically do few to no test borings up front and they don't typically take all the effort to remove the colluvial soils from red bed materials.

They typically -- and this is a sad state of affairs -- but they typically just build the fill embankments and keep their fingers crossed nothing happens because they don't want to spend the money up front. They figure if anything slides they will find out about it later and deal with it later.

MR. DePAUL: That's hearsay, speculative, irrelevant. There are a lot of things with that testimony that are objectionable. I won't continue to object every time but what developers do and how they spend and how they develop property, it
bordered on slanderous for him to say that about other developers. Without them being here, without them testifying, it's hearsay at minimum, it's outside his scope of expertise at a minimum and could potentially be a bunch of other things. So \(I\) want to put that on the record.

MR. BOWARD: Can I answer that?
It's not outside my scope of expertise. I'm actually engaged as an expert witness on multiple 1 andsitides and property that's been prepared by developers. What I said is what I've seen multiple times, not just now, but over the past 30 plus years that \(I\) have been doing this type of work.

Not all developers do this, of course. There are some that will do more. Not all developers. I am not going to make a blanket statement. But the cases I've been working on, \(I\) have been seeing a lot of that.

BY MR. SOSTER:
Q. Again, answer to the best of your ability. I am asking a question that might require a lot of analysis. If developed as a residential site, does it propose any more or 1 ess risk
than being developed as a school site?
A. Again, it would come to the amount of effort put in the engineering pre-development as far as drilling the site, as far as investigating any of the water sources. Because most of the time the houses, depending how big they are, a lot of them will be on the outside of the ridge and the roads usually run down the middle of the ridge so a lot of those houses are being built on the fill material that has sloughed down over the years. And if you don't see what's underneath those for the foundations, the potential is much greater than the expense that's being put forth in the effort of engineering here to design this school.
Q. You're familiar with this site in terms of grading and slopes. Are the slopes that are proposed in the site development for the school greater or 1 esser than the slopes that exist there now?
A. You mean in height or length?
Q. Look at your walls, your stepped walls. Again, \(I\) know there is detailed design. But those stepped walls, can you give me -- I mean
are they --
A. Well, they are not stepped walls. You are talking about the 1 ines there. Those are the contours. Those are ten foot contours. So it's actually just a slope.
Q. Are there any stepped walls that will be part of this construction?
A. At this time, they are not showing any.
Q. Any retaining walls that will be part of this construction?
A. There possibly could be. At this time, I don't see any on the drawing.
Q. In your role as a civil engineer, Geoff, do you work with municipalities?
A. Yes.
Q. Do you provide 1 and use guidance in development of zoning and those types of matters?
A. Yes, we have been municipal engineers for several municipalities.
Q. I'm not a zoning expert but this special exemption that was given for this site -again a question that might take some analysis, but I'd like your opinion -- if you were developing zoning for this township,
would you have -- knowing what you know now, would you have allowed the special exemption for a school on this site?
A. Again, you have to go back to when -- I use the word forefathers -- put forth wanting to have zoning in this municipality -- that \(I\) do not see any difference in characteristics of the east side of Camp Meeting Road versus the west side of Camp Meeting Road. It's unusual to see where the road, they've designated -you have designated \(A A\) on your west side which allows a school but on the east side it's a special exception.

Whether that was due to one of the forefathers 1 ived on that side of the road or the other side of the road is usually what transpired. As far as - the reason \(I\) think the special exception was put in is to make sure that -- the word "school" can be a broad term. You can have a diesel mechanic school, you can have, you know, some kind of aircraft engineering school.
Q. You can have an environmental school.
A. Correct. So you can have a lot of types of schools and therefore they wanted -- the
township would 1 ike to have a say on what kind of school goes there. But because they have already identified that it's a special exception, it means they are going to allow it to be there. So this is a high school which is a normal high school of a public school, it's not private, that it's nothing out of the ordinary.

MR. RESTAURI: Mr. DePau1, I hear your objection.

MR. DePAUL: He's giving a legal opinion, clearly. Your question asked that. So I don't want to disrespect your question, but \(I\) just want to protect the record. So it's nothing against your question, it's just protection of the record in the event this case is appealed. I objected to that answer, move to strike. It's a legal opinion. Obviously, we disagree with it.

MR. RESTAURI: It went a iittle far, Geoff. Do you want to try again?

BY MR. SOSTER:
Q. My question was meant relating to 1 and use, the land use issue. Does a municipality arbitrarily say we will give a special
exemption to AAA zoning, allow the school to be built there and not even define a school, what a school is? And my question was really, if you do that kind of work for municipalities, is that the way most municipalities work, that without expert opinion, where they look at the 1 and and say, maybe we shouldn't build a steel mill here, maybe we shouldn't build a school here?
A. What normally is in the definitions, they will have in the definitions the various school types and they'11 have in there -- such as you may put industrial here but they have stipulated that only this type of industrial. Cause there is new technology and new things.

Like \(I\) was involved in \(I-79\) industrial park. That's, quote, light industrial. So it's not a heavy industrial. It's where, you know, Pepsi Cola is in there, there is a distribution center. So that's where they had definitions that you could put industrial but it was under a certain classification.

Here, the ordinance does not
specifically -- I think was mentioned earlier you have certain definitions that are very
detailed but a lot of definitions are very broad. So it makes it difficult to determine.

MR. DePAUL: Same objection.
MR. RESTAURI: Noted.
BY MR. SOSTER:
Q. And as a comment from my own approach, I understand from prior testimony that because it's special exemption doesn't mean it's automatically stamped allowed. There are certain conditions that have to be met.
A. Correct.
Q. You have worked in other school site development. Comparatively, does this school site development present risks that other school site developments you have don't present?
A. Given I'm in Western PA and most of the schools -- one is in Western PA. Gateway had the same situation. There was red beds there. Same way down at McKeesport, we had the red beds involved in that. Pretty much most of the buildings are founded on rock which, whether they can reach it by normal footings, so it's within five to six feet deep or they have had to go deeper where it's 10 to 15
feet, they put caissons or driven piles.
Q. And your expert report is based on the site -or the facilities are shown on that exhibit.
A. That is correct.
Q. No other facilities are considered outside of that exhibit.
A. Correct. We were just given that site plan that you have before you here.
Q. So any facilities that may be added in the future would require --
A. Additional engineering, correct, and review.
Q. Did you review alternative sites in Leet Township?
A. Yes. We initially looked at, preliminary, Health South. They approached them and were not able to get an agreement with them to allow us access to the property to actually do some due diligence.

We did look at a combination of properties that are bordered in Leet which is called the Scrabbit property in conjunction with another piece of property that's in Bell Acres. There we did some preliminary due diligence. We did not get to drilling there. We did look outside of Leet Township at
several properties.
Q. How does this particular 108 acre site for a school, including all its related buildings, create a substantial detriment to Leet Township that would not be created if the school serving the same number of kids, same facility, same faculty, same amenities, same price tag be constructed somewhere else in the AAA zoning district in Leet Township?
A. It would not.
Q. You're stating that all these other sites present the same --
A. Present the same thing. And given the fact that just on the west side of Camp Meeting Road is all zoned for school so you would have the same traffic, the same impacts.

MR. DePAUL: Vince, I object
again. This is outside of the scope of his expertise for what he's been offered. Lack of foundation. Calls for hearsay.

MR. RESTAURI: Noted.
MR. DePAUL: To the extent there are any additional -- calls for legal conclusion, too. So to the extent -- I don't want to interrupt, continue to interrupt the
questions. If it's okay with you, can I make that a continuing objection to the extent that 1ine is pursued?

MR. RESTAURI: Yes, it's
continuing. Thank you.
MR. SOSTER: In answer to the
question \(I\) just asked -- it's not just related to the civil work, it's related to the geotechnical work -- if \(I\) can repeat the question, Joe. Or did you hear the question?

MR. BOWARD: Why don't you repeat the question?

MR. SOSTER: Relative to geotechnical work that's required for this facility and the risks that are proposed from this site, how does this particular 108 acre site for a school, including its related buildings, create a substantial detriment to Leet Township that would not be created if a school serving the same number of students, faculty and administration, with the same amenities, same price tag, were located somewhere else in the \(A A A\) zoning district in Leet Township?

MR. BOWARD: Okay, somewhere else
is pretty broad. But we did look at some of the sites that Geoff had mentioned that we were instructed to look at by the district. And the sites that we looked at all had red bed strata problems, every single one of them. So we had to deal with that no matter which site we would go to.

The other sites -- I don't think we drove test borings in any of them, but we did the geologic review, we went that far to understand the general geology. We had gone that far with the Tuhl site, too. They all had similar problems.

BY MR. SOSTER:
Q. So maybe in a more simple way, of the sites you had looked at, civil, geotechnical, there is no site that you saw that could fit the situation better for a school than this site?
A. Well, better is determining a lot of factors.
Q. To be frank, spending 21 million dollars for site development.
A. I'll clarify. That 21 was for the 50 acres of buildable area. That's not what they are spending here now.
Q. Let me interrupt you, Geoff. Maybe that's
stated wrong. It's not an economic issue, although maybe economic issues are part of our 1and use. We have to determine how we do that.

But relative to risk to public, safety of the public, welfare of Leet Township -- and 1et's not use the word public, let's use Leet Township -- of any of the sites you saw from a geotechnical and a civil perspective were better sites than this site. And again, better is qualitative, but I'm looking to safety, fewer landslides, less likelihood of lands 1 ides, runoff, deforestation, those types of issues.
A. All the sites we looked at was going to have to remove trees cause they were 1 arger properties that had vegetation on them. They weren't flat, open fields. All of them, as Joe mentioned, had red beds so we were going to have to get involved in significant site work, meaning excavation and moving of dirt to create a buildable area. So all of the sites that we looked at were similar in impact.
Q. Did you look at sites outside of Leet Township?
A. Yes, we did.
Q. Did you look at the existing site of the school?
A. Yes, we did.
Q. And that site is not --
A. The existing site --
Q. From a land use perspective.
A. -- from a land use perspective, is not the landslide issues, but there they have springs and ground water at the current high school that are coming out of the hillside there below Beaver Road and down where the football stadium at the lower level, that's all in the flood plain.
Q. And the flood plain cannot be mitigated?
A. The only way you can mitigate the flood plain is they would have to buy other property to offset what they filled in along Sewickley Creek. You have to prove to the Army Corps of Engineers you will not raise the water level.
Q. This may be going outside of what is expected of me as a Zoning Hearing Board, and \(I\) want to assure you that \(I\) look at everything from a Zoning Hearing Board perspective, 1 and use. Could it lower the flood plain? You could not
lower the flood plain?
A. That's what I meant. You would have to have all the property to lower, to offset what you were filling in.
Q. I'm not saying filling. I'm saying construct downstream facility that lowers the flood plain.
A. Well, the problem is --
Q. How do you know Beaver dam is not --
A. It's an Army Corps of Engineer dam.
Q. How do you know there is not a Beaver dam downstream that's causing the flood plain?
A. Because we looked at the flood insurance reports where they calculated to determine the flood elevations for the mapping, for flood insurance, and the water level that is basically covering the ball field is generated by the dam that's downstream by the Army Corps of Engineers.

So the height of that dam, it's called back water. It is backing the water up and a hundred year storm and 500 year storm onto the ball field.

MR. SOSTER: For the moment, I am completed. Chuck?

BY MR. SOMAN:
Q. Hello, everybody, I'm Chuck Soman. I live two blocks down. I have a couple things that we were talking about why this was probably made a AAA, that property. Do you know what \(I\) am talking about?
A. Uh-huh.
Q. I think a big part of that was that the Walkers owned that property and they carried a lot of weight around here so they probably said "we don't want nobody building anything here." That was one thing.

Now in 1968 to 1972 they built Quaker Heights, okay, 106 homes or something. Was there any type of engineering going on back then?
A. Basically, 1972, when Agnes came through, was when the federal government and the state governments started passing regulations for storm water.
Q. So that was a ittle late.
A. Correct. It would have been after that.
Q. But there is quite a few of the homes that are built on the edge and none of them have slipped off the side yet. I don't know if there has been anything you guys would know of. Not downstream. We all know there is a big problem in Leetsdale. But for the Quaker Heights houses, any problem with them?
A. Not aware of any. I've driven back there cause \(I\) wanted to find out where all the water was coming from. I do know there is an erosion channel that's from all the storm water that's being dumped, I don't know whose property it is, to get down to Camp Meeting. So it's a pretty deep gully there.
Q. I just wondered if, you know, you guys have done a lot of things and you're going to continued to do a lot of things if you get hired, that kind of stuff wasn't going on back in the day?
A. Not in that time period.
Q. Were either of yens in on the Baden Walmart built at the top of the hill?
A. I was not.

MR. BOWARD: I was not an engineer on it, but \(I\) had been engaged by that
municipality to take a look at the geotechnical aspects of it, on behalf of the municipality, like I talked about before.

MR. SOMAN: Was there the red clay and the ugly dirt involved?

MR. BOWARD: As I recall, not to the extent we're talking about here at this site. There were some landslide concerns, but the engineers on that project had addressed that to my satisfaction.

BY MR. SOMAN:
Q. Okay, good. If you go in the property, you're going down the driveway that we're talking about now, the one that goes straight back, this side was pasture, kind of nice. The other side is like a cliff. So what's the plan for that?
A. Well, the road is going to go down along the top but then if you get further back where the Walker house is now, that was a field there. It was sort of a crown field. They leveled that off to bring that house up.

So that's where the school is going is in that area, the building. So there will be a road coming out along the area that you defined.
Q. Speaking of the home, which is an historical home, my thought is when there was a guy from the school that said, oh, we can tear that down and it's even written on the plans to be demolished --
A. On which plans?
Q. It's on this. Existing home to be demolished.
A. For that? I know the front ones have demolished. It's on that one? Okay.
Q. All right, so with Mr. Tuh1, with his amount of attorneys, engineers, anybody else on the planet that he can afford to do and he had to move it, he wasn't allowed to tear it down. What makes us think that you can tear it down? I mean \(I\) know it's not a geotechnical question, but it's on your prints.

MR. BOWARD: Al1 I can say is that I don't think we had a lot of input on that. That was a decision by others. That wasn't our decision. Is that correct, Geoff? MR. PHILLIPS: Only thing I can
say is \(I\) have been involved preliminary wise up to this point with the project, and I know the architect has been directed to look at the
house and how to incorporate it into the new high school. How it's going to be done, that has yet to be determined. What is to be done, you know, that's still to be determined.

MR. BOWARD: That's beyond us.
BY MR. SOMAN:
Q. I know Mr. Tuh1 said -- when they said he can't tear it down, he said, okay, we'll move it. Well, can you imagine the cost of that? They didn't even crack a piece of plaster. It's amazing.
A. It was 1.2 million dollars to move it.
Q. I would have done it for 1.1 .
A. They had to have lunch. It took a while.
Q. All right, you have Freedom High School up on the hill. These new schools are on a hill. But it is up on a hill, beautiful school. However, I think it was about five years ago, maybe a little more, all of a sudden they had a sink hole in their field. How do we prevent that? How do you prevent that?
A. Well, I'd have to know what the cause is, whether it was an old well. I have had instances where property has been developed on farmland and all of a sudden a hole shows up
and what it is, it's been an old stone well that just got covered over with a piece of plywood and dirt got put over it and nobody knew it was there. Again, to truly answer your question, when site work starts and we open up the ground, we will able to see things like that.
Q. Hopefully.
A. Yes.

MR. BOWARD: Yeah, Geoff is exactly right, that we'd have to know the cause of it, and we don't because there is more than one possible cause. Could be an old well, 1 ike Geoff said. It could be an underground sewer 1 ine that the joint opened up and you got piping, they call it piping in the fine soils and a sink hole. It's probably not mine subsidence cause there are really no deep mines in this particular area, not this one area.

The other type of thing that can happen, which is not going to happen here, would be karstik conditions, where you get sink holes from limestone. But we really didn't find any 1 imestone at the site so
that's very unlikely that would occur here.
So I guess the factors would most likely be the well situation that Geoff pointed out or a sewer 1 ine for some reason opening and you get a sink hole. But you have to find the cause first.

MR. SOMAN: Okay, thank you.
Also, in 1918, I think - there is a cornerstone on the high school. Did they have geotechnical reports when they built that?

Because it looks like a place that could slide off the hill down to the bottom.

MR. BOWARD: Geotechnical engineering did not become something of a profession until the 1930 's. There were a couple of engineers, Tersagi and Cassandra, that were involved in turning geotechnical engineering into more of a science. So 1918 there has been little to no geotechnical engineering or geologic considerations.

MR. SOMAN: Maybe a dividing rod. But it didn't slide off the hill. And the hill is a steep hill. I sled rided down on a cafeteria tray and it didn't end well for anybody. I know that.

BY MR. SOMAN:
Q. Blasting. From what \(I\) know and have seen, don't they have these blankets?
A. They do use those. They are mesh steel blankets they will lay down if they think there possibly could be any fragments.
Q. Okay, because I actually watched it blow up and it was boom, \(I\) was expecting a big boom. I was very disappointed.
A. That's another safety factor they can put on that can be required.
Q. So let's say everything is a go and then you guys are going to go in and do a hundred more holes. What if you find out it's bad?
A. When you say bad, meaning --
Q. Meaning you shouldn't build a school here.
A. I will let Joe answer.

MR. BOWARD: We would advise the school district of our findings. We're engineers and there is actually a code of ethics for engineers and in that code of ethics we have to provide all the information, relevant information to our client. We can't -- we have to tell them what we found. The ultimate decision will be theirs, but we have
to make sure they are making an educated decision.

MR. SOMAN: Okay. I think that's all 1 have for right now. We will turn the mic over. Thank you.

MR. SOSTER: Before I give it to Dave, I have one. At this stage, are you aware of any need for applying for a dam permit? And I'm thinking of your retaining ponds.

MR. PHILLIPS: Only need a dam permit if we have more than 12 foot from the crest to the bottom.

MR. SOSTER: Rather than an excavation?

MR. PHILLIPS: Correct. It has to be from the ground surface to the final finish elevation of the top of the dam. There is a permit required by dam safety at 12 feet. If it's over 12 feet, then it has to be permitted.

MR. SOSTER: And at this time you are not aware of needing any?

MR. PHILLIPS: That's correct. We're not proposing anything.

MR. SOSTER: Dave?

EXAMINATION (of Mr. Phillips)

BY MR. KOVACS:
Q. You talk about the sandstone cap at the top?
A. Yes.
Q. So let's go down a little bit, like where he just talked about at the detention basin. What's the makeup of the soil underneath that?
A. That's where the colluvium soils -- that's where the soils have slid and that's where we determined up to 40 feet thick. So that will all get excavated out. Down to rock.
Q. So you will take that all the way down to bedrock?
A. Correct.

MR. BOWARD: Yes.
MR. PHILLIPS: So when we dig all that out, instead of putting it back and building it 40 feet back up, that's where we're going to put the detention facility.

BY MR. KOVACS:
Q. And do we have a capacity on the detention basin?
A. We have not done any design. So I can't give you that answer right now.

MR. KOVACS: That's all I got.
MR. RESTAURI: Are there any
members of the audience in support of the application who wish to ask questions of the witness?

MR. MILLER: My name is Daniel
Miller. I'm representing a group of homeowners in support of the petition. I have just a couple questions, and they largely relate to some of the testimony you've provided regarding how the plan --

MR. RESTAURI: Excuse me, Dan.
You're actually kind of doing redirect of these guys, right?

MR. MILLER: Do you want me to
wait?
MR. RESTAURI: I think what we probably want to do is --

MR. DePAUL: He declined and changed his mind after the lunch break.

MR. RESTAURI: He asked me and I did say -- there is no objection?

MR. GRAMC: None.

MR. RESTAURI: Please go ahead.

JOSEPH BOWARD,
having been first duly sworn, was examined and deposed as follows:

\section*{CROSS-EXAMINATION}

BY MR. MILLER:
Q. Thanks, I appreciate it. So I had some follow-up questions about some of the comments and testimony you provided regarding the changes to the slope compared to how they are now and regarding drainage. So I'm going to go through some questions about each topic. So in your initial assessments after the cores were taken, after the analysis was made, I understand that you determined that the property is generally metastable, right, that is, around that 1.0 score that you described, correct?
A. Correct.
Q. And is that general throughout the area? Are there some points within the property that are higher and lower and they generally average to one? Or how does that work?
A. That's about right. We average it sort of one. There are some areas a little bit more stable, there are some areas that are in active movement. I mean maybe not this moment, but every time it rains it moves a little bit more. That would be indicating that it's one or sometimes falling below one. So it would be more or less an average.
Q. Gotcha. As I understand it, based on your testimony, at that one point, at that one point score, when there are conditions that push toward instability, there can be further movement, right? Like the sloughs that you identified already, correct?
A. Yes.
Q. So the area is already in a sort of transitional state where it's not as stable as what your planned outcome for the areas would be that involve remediation of fill?
A. Where we're putting the fill embankments, we're going to be improving the factor safety, obviously. Where we are not doing any earth work, the factor of safety is probably going to remain about the same. The only thing that it may help it is the fact that Geoff is
putting these storm water facilities in, it's probably going to cut up a lot of the runoff, the storm water runoff to the slope areas we are not doing work on which should make them a little bit more stable because we are catching all that water.

Right now, it's just raining or snow is melting and it's just running down the slopes and into the soil mantel. So the fact we are putting the storm water system there probably makes those slopes a ittle more stable.
Q. Actually, the storm water would be my second point. I wanted to combine them now that you have addressed that.

So not only is the general average stability score for the property increasing, right, because you're taking the property where the fill embankments are and making it more stable, bringing it up to 1.5 which would raise the average generally, correct?
A. Yeah, that's correct.
Q. And then the remediation of the storm water which will address not only some existing issues around the erosion near the Camp Meeting Road and any additional runoff that's
incurred because of the construction, that would help with the stability of the property as well, correct?
A. It certain1y will, at least in some areas, yes.
Q. Okay. Can you walk me through the benefits that would be incurred by both the property and by nearby properties as a result of those two issues?
A. Well, the properties down gradient, in other words, below the school in elevation, they are at some risk of landsiides encroaching into the property.
Q. Right now.
A. Right now, yes. And by modifying these slopes with fill embankments and so forth, that risk wil1 be substantially mitigated.

The same is true of the properties that we are not trying to fix the condition of the slope or leaving it pretty much the way it is. Since we are controling the storm water which is really basically uncontrolled on this property now, it should help those slopes as we11.

Slope stability is affected by four
major factors. One is putting surcharge on top of the slope such as fill, uncontrolled, so you are not doing it in a way that's going to be engineered. Another way is cutting at the tow of the slope, taking the slope tow away which we're not doing here.

The third one is water. If you increase water to a slope, it's going to reduce the stability because water reduces the shear strength of the soils. Since we are taking the water away, the slopes will have more of a chance to dry out.

And then the third way would be earthquakes or uncontrolled blasting. We are looking at if they have to blast here, I don't know that's really been determined yet, but if they do, it would be controlled blasting. So it would be -- earthquakes are uncontrolled vibrations, vibrations of adequate magnitude that could cause instability.
Q. Okay, and I think my last question is going to be this. Do you often find on the projects you work on, especially projects like this involving public works, that properties nearby have incurred fewer risks or run into fewer
issues because of the different steps related to slope adjustment, to storm water mitigation and so on that are taken as part of these construction projects?
A. Well, the projects where \(I\) have seen it done properly, yeah, it does mitigate the risk. As I said earlier, I'm involved as an expert and have been on projects where things were not done properly and those result in sort of detrimental conditions. But the idea is to properly engineer it up front and to be sure it's implemented correctly by the contractors as monitored in the field and documented in the field by the engineers.
Q. Okay, well that response generates one follow-up. So thinking about all of the testing, inspection and preparatory steps that have been taken today, understanding that there is not a final plan yet, would you say that any of the projects you've worked on have required additional inspection, testing or preparation, or is this sort of the premium standard, if you will, in terms of those efforts?
A. We don't really have a premium standard. We
have a standard of care and, regardless of the project, we recommend that standard of care be implemented which entails and includes construction phase monitoring documentation, observation, evaluation by the engineers, in my case the geotechnical engineer, to verify that they are constructing the slope in accordance with our recommendations and the design.
Q. Gotcha. Maybe I miscommunicated. I'm interested in the efforts undertaken to date. So compared to other projects like private development, it sounded like, based on your experience, that the testing with the cores, the analysis with regard to the slope, those are steps that may not be undertaken with regard to every private development. So would you say that the standard of care met for this development meets or exceeds anything that you performed for other projects?

MR. DePAUL: Same objection that I
have lodged in this 1 ine of questioning before. The witness' opinion regarding private development is outside of the scope of his opinion and constitutes hearsay. His
experience with private development is not an issue here.

He previously made some surprising testimony about what he's experienced dealing with private developers. I think that's out of the scope, it's hearsay. There is a lack of foundation.

MR. RESTAURI: It's noted. You
may answer.
BY MR. MILLER:
Q. You may answer.
A. I think the best response is there is a standard of care that's followed. We never say we're going to do above and beyond the standard of care cause that's undefined. First of all, what does that even mean?

Second of all, quite frankly, our professional liability insurance carrier said if we ever make that statement, we're bareback, they are not going to cover us. We can't say that. Cause all we can do as engineers is follow standard of care.

So we are following that, attempting to follow that on this. We haven't gotten to the design phase yet. On some private
developments that I have experienced with that, I have reviewed as an expert witness, the standard of care that I'm familiar with and I would use, and I think the other geotechnical engineers that \(I\) know would use, I didn't find that. I didn't see that in the documentation provided to me.
Q. Okay, thank you.

MR. RESTAURI: All right, any
members of the public who are not lawyers and who are not represented by counsel who would like to ask questions of either of the witnesses, whether it's supporting or opposing the application? If you are present in the room, please raise your hand.

Okay, I see two hands. Three.
Four. Okay, four. All right. Let's start at the far left. Yes, ma'am?

MS. GATESMAN: I'm Kim Gatesman, Edgeworth Borough, and thanks, Mr. Phillips and Mr. Boward.
EXAMINATION (of Mr. Phillips)

BY MS. GATESMAN:
Q. So to follow up on a few of the other questions which 1 ed to do all the other properties that you investigated before, saying this one is the best option we can get out of our other options, do all of them have more down slope neighbors than this site right here?
A. I would say they probably have similar amounts because in Leet Township the ones that we did look at did have neighbors that were down slope. As far as Bell Acres, there was the same.
Q. Same total number of houses?
A. Not the same total number of houses, no.
Q. So do they have 1 ess or more?
A. They all had 1 ess.
Q. Okay. Does the current existing high school on its location, does it have any houses where people sleep in them at night below the current existing high school?
A. No, because the high school owns the property all the way to the highway.
Q. So there were other properties that didn't have any down slope neighbors, other than tennis courts --
A. The one you just mentioned, the current high school. All the other ones did have houses.
Q. But less houses.
A. Correct.
Q. So you mentioned during the average risk, when we are all done developing this site, to get to our nice little flat plateau, is going to be 1.5 which is better than what it is right now. But at any time during this development does the average risk go below 1.0 or does it have to wait until we are completely done to be 1.5 while this whole risk thing is going on?
A. Well, during construction the contractor is bound by OSHA and they have regulations that the factor of safety is determined. For instance, if they are doing trenching, they have to have trench boxes. If they have to excavate such as this 40 foot deep colluvium material, that they are required to maintain certain slopes if they can't do it at one-to-one because the material won't hold up. If not, they have to go in and put temporary shoring in. So there is other methods that they would institute during the construction
to shore up the slope that they were digging next to.
Q. That's OSHA.
A. Correct.
Q. So that's for the people working, right? OSHA covers the safety of the workers while doing this site.
A. Well, it's also the public because the slopes are above the public.
Q. So what are the standards for OSHA? Does it have to be greater than or equal to the existing risk it has? Or is it \(I\) have to be at the risk level of 1.5 while \(I^{\prime} m\) doing it?
A. No, it's determined by what OSHA has determined is a safe working environment to be able to construct, okay. So they have regulations for trenching. You know, you can't just dig a trench down eight feet and have a person there without having shoring.
Q. I understand working conditions. I'm just saying, in the protection of the neighborhood that are down slope from there, does OSHA specifically address homeowners versus working conditions?

MR. BOWARD: I'm going to go
beyond OSHA here cause they do tend to protect the workers on sites. What is typically done is when you get to the design phase, we have to look at the temporary slopes during excavation to make sure they are going to be safe. We actually run slope stability analyses on those. The factor of safety is not typically 1.5, it is typically 1.2 or 1.3 for the temporary excavation. And that may entail going in and some of these slopes, laying them back, and flatter grades before you even begin the excavation at the tow of the slope.

Often these fill embankment excavations, it's not unusual for them sometimes to start basically from the top down, to lay back the slope, get down to the tow and then begin your excavation at the tow to prepare for the foundation for that fill embankment. So measures have to be implemented by engineers to verify that the temporary slopes are going be stable during that time period. Then they begin to work on the placement of the fill and so forth and eventually get back to a factor safety of 1.5
which has never been achieved out there.
BY MS. GATESMAN:
Q. Okay. So in your prior testimony you said that you had made the due diligence report prior to the purchase of this particular site to the school board, correct?
A. Correct. We did -- again, we evaluated the properties that were identified and the due diligence that was asked of us to do on this particular property, we gave them all the plusses and minuses and the school board then made a decision of whether to buy or not buy.
Q. So when you were doing that -- cause I've done a commercial project or so before and normally I made sure my zoning was in place before I purchased the property. So did you recommend any contingencies prior to the purchase, like making sure that the zoning was approved or that you completed all the tests so we would know what the sandstone cap is like right now or a whole bunch of other things which no one knows?
A. Well, we did do borings before they purchased it. And as far as the zoning, we made them aware that special exception was for a school
here.
Q. Right, but did you suggest you seriously need to have some contingencies before you purchase this property that should be met prior to purchasing the property?
A. Well, that's more of a legal question on real estate. I mean I don't know what contingencies \(I\), as an engineer, would be for zoning.
Q. Okay, that's fine.

You mentioned Wood Spur as an access point to the site. Will that road be enhanced to provide a satisfy emergency egress, ingress options since Camp Meeting is our only way onto this thing normally?
A. My understanding is, no, that will not be improved, it will remain there because that whole area is in Edgeworth and is going to basically be staying natural vegetation. There is no development proposed there. So as far as access in and out of the site, it's at the two locations that are shown on Camp Meeting Road.
Q. But say in case of an emergency, something we really have to get everybody off of that
thing, we can't use that at all to get students off of?
A. They can walk it, yes.
Q. So in the initial designs, when you were recommending -- and \(I\) understand this part is the school board asking you to do this -- that you are supposed to get 50 relatively flat acres. And then there was a design done by EBH Engineers which had a lot more than is currently on this plan. It had tennis courts in Edgeworth and a whole bunch of other stuff. So what happened between what is there and what everybody thought was going to be there in 2019?
A. Well, when I started on this project, the school board basically had directed the real estate broker to find property to build a whole campus, meaning they wanted to pull all of their ancillary sports fields, all stadium, the school, the administration. There was even talk of putting a bus garage. That was part of the 50 acres, basically everything all in one site. Because they were proposing for the next hundred years for this district in the meetings that they had.

What happened then was we did our due diligence, they purchased the property, they hired an architect that you mentioned to come in and start doing some preliminary layouts such as what Mr. Thomas' company did, but they were still being under those -- all those amenities.

Then, finally, they put a price to all those amenities. That's what changed the school board to say, we don't have enough money to do all those amenities, we really just need a new high school.

So Mr. Thomas was directed to just do a layout for the high school, and I did see he put a tennis court on there and to have physical education they have to have an area, a field to do that, and that's my understanding what the field is. So price wise, that's what's on it at this time.
Q. Since you said it got downgraded and he was given the directive to just build a new school, at that point, even after we've now purchased the property, was there any discussion -- did the school board ever ask you to go back to the current location and
just say, hey, could we put a new high school there and give you that directive?
A. Well, we had looked at that in the initial directive because the previous superintendent I guess wanted to reuse the old high school. And so the first study that was done at EBH -well, she was at Eckles. It was Cassie, the architect, she was with Eckles at the time who did the other two school expansions in the district, to evaluate that. The situation is the old high school pretty much has been built and expanded over the years and has multiple different kind of foundations, has multiple issues.
Q. That's not my question. I'm talking about tear it down and a brand new thing treated as if it's a brand new site, there is no high school there, it doesn't exist, it's poof, gone.
A. Well, the factor that involved that was - and I was only hearing what was in the meetings -where are you going to put the kids in order to do that? So that was a factor that they were looking at.
Q. So the answer, though, is nobody really went
back after we now downgraded the plan.
A. Correct. They did not go back. They initially looked at it, moved on, and then did not come back. To my understanding.
Q. Which is fine. Because the children moving part is a whole school board issue. My oldest son went to Anthony Wayne twice. He got middle school and got elementary school. So this whole rehousing humans -- and we just did -- zoom is not something insurmountable that we can't figure out where to put people. It's not a real good reason.

So you were one of the people who was giving the tours along with Charlie and the new architect of the site which was wonderful. John Thomas had mentioned that the storm water was going to be over designed. So how much extra capacity in percentage wise would it be able to handle above the minimum amount of a hundred year flood?

So say that's maybe four thousand -let's do it in thousand gallons or percentage wise. Is it going to be 30 percent more extra water we can deal with or is it ten or five?
A. Well, there is a lot of factors involved and
some of it mentioned with existing system is that we have to analyze the capacity of what pipes are there and what amount of water can go down through that system safely, then determine how much water is coming down from Quaker Heights and then whatever is left below that, we will have to design the facility to handle that.

So that \(I\) can't tell you right now whether it's 30 percent bigger or 20 percent bigger, because of that. But what would basically happen is there wouldn't be any more water coming down and into the culvert there at Beaver Road than the capacity of that pipe.

So, in other words, you're only allowing a certain amount of water that can go in there. If Quaker Heights has say -- say you are allowed ten, Quaker Heights provides six of it, then we are only allowed to release four.
Q. Okay, so then we're going to have to hold back extra water somewhere to make sure --
A. We will hold it back there.
Q. But when we're designing it, if we're holding it back, what amount extra are we going to
hold back? Percentage wise.
A. It maybe 20 , it maybe 30 percent.
Q. It wouldn't go as low as five. It would be at least significant, a decent chunk, right?
A. Yeah, again, because of the nature that Quaker Heights hasn't done any detention. And it may be that, as you brought up, there is an issue over there that maybe, in conjunction with the community, we work with something over there on the other side of the road.
Q. So then on the tour you mentioned what would happen during a micro burst, dramatic increase of all these impervious surfaces?
A. The water would flow into the storm system and be discharged into the detention facility.
Q. But initially you said you couldn't plan for what would happen during a micro burst because it's huge amounts of rain. So now we can address micro bursts, handling all the rain?
A. Again, the facility will be designed for the hundred year storm. Now whether that micro burst is a hundred year storm or it's only a 90 year storm --
Q. Let's make it a 200 year storm. Can we handle 200 year storms?
A. No, because it's beyond any standards, beyond even the capacity of anything along the road, the highway. So, in other words, it's a standard that only if you are designing a bridge that you would design to. For volume of water.
Q. Okay, I'm pretty sure I saw 200 year floods. There are no detention levels higher than one hundred year flood.
A. That's pretty much all the standards since 1972 that I have been involved in.
Q. I need to research.
A. Now dams will go to 500. If it's a dam, a large facility that has empilements, they will go to 500 year storms for their emergency spill waste.
Q. Okay. So in the 21 to 23 million dollars that's just the rough grade, doesn't include the utilities, but you said it might be lower because the site is smaller, but does that include potentially blasting -- I'm talking, worst case scenario, the very worst -- what's a ballpark to get the utilities and blasting and all colluvium soil and everything bad happens when you do the rest of those core
borings?
A. Well, the 21 to 23 million \(I\) mentioned was the estimate to do bulk grading to get the 50 acres, okay. That's not what's being here. The grading that's being done here, if I remember correctly, John Thomas indicated it's --
Q. 27, I think.
A. I thought it was around 12. Oh, six? Anyway, it's a much lower number so it's not that high. But that's only a construction side of it. The engineering and the design and all that, that's a separate number.
Q. Okay. I have some more at my seat but if you are looking at the site and imagine that this high school and stuff isn't here, doesn't the topography of the Leet stuff look a lot like the topography of the Edgeworth part? Like we have a flat area and some steep slopes and it surrounds these little flat areas.
A. Yeah, along the ridges there were fields during prior and fairly flat areas and then it's steep towards the north, steeper on that side than it is to the south towards Leetsdale.
Q. But the Edgeworth side, when we are at the plateau, kind of resembles the Leet side, like the slopes, and we have a top flat area.
A. Yeah, I can agree to that.
Q. They would be kind of sister and brother or stepsisters or something.
A. Okay.
Q. Half related. So in Edgeworth, which is where I 1 ive, and \(I\) have some of the same type of topography on the part that \(I\) wasn't allowed to develop, that's the conservation overlay district which is having a slope greater than 25 percent. So what's the normal slope before development on the Leet-ish part? Like is it greater than 25 percent or 1 ess than 25 percent?
A. On the south side, it's less. On the north side, there are some areas that are at 25 percent.
Q. So we had a lot of restrictions. Like you can have a max impervious surface of 20 percent but if you are in conservation overlay district, then it's half of that which is ten percent. So what's the total impervious surface there --
A. Being shown?
Q. Uh-huh.
A. I think it's in the neighborhood of eight acres.
Q. Okay, and then related to things that could make this more stable, in the road design manuals that \(I\) was reading, for our types of soil, clay and whatever, the minimum standard is a two-to-one slope and they say especially depending if you are adding water or some other stuff, you can go as high as three-to-one. So isn't a three-to-one slope more stable than a two-to-one slope?
A. It depends on how you put it in, yeah. The flatter the slope --
Q. It's done exactly 1 ike the engineers said it was to be done.
A. Well, if you build them the same way, they are both the same stability because you have the safety factor that's the same. Which means that the material is one and a half times more stable than before it would lose its stability.
Q. It's exactly the same as my slope gets dramatically increased and 50 percent less?

The risk is the same?
MR. BOWARD: If you are talking the same conditions and you were to run a sub-stability analysis on two-to-one slope compared to three-to-one slope, your three-to-one slope safety factor will be higher.

MS. GATESMAN: So there is one more thing to make that slope safer would be a three-to-one slope.

MR. BOWARD: It would increase the factor of safety, but there are other limitations on this property such as available space. If you go too flat a slope, you will not have enough space at the top and flat area to provide for the roadway and some of the other amenities, the parking lots, the school building and so forth. Cause when you make it a flatter slope, you will lose less space on the top.

MS. GATESMAN: Right.
MR. BOWARD: A two-to-one slope is quite a normal standard of care slope for a fil1 embankment. So that's not unusual. Going steeper than two-to-one, there are
potential problems with that.
MS. GATESMAN: But considering it's in the AAA residential area and the way it is right now, there is technically three homes, a footer, a house that moved and there is an entrance house. If you were to leave it as AAA, you wouldn't have to do any of that, correct? If you just leave it.

MR. BOWARD: I'm not sure what the question is. Can you answer, Geoff?

BY MS. GATESMAN:
Q. If it was residential and you only allowed two more houses or something.
A. But you still have areas that are going to slide naturally because they've already shown signs that they are going to siide on the slope. On this property.
Q. Do you have like a plan like on the QV site that shows all the 1 ittle different spots that it's been siiding?
A. No, we don't.
Q. Can we get one?
A. I don't know. That's a legal question.

MR. GRAMC: If it doesn't exist.
MR. PHILLIPS: We didn't create
it. We have observed these areas.
BY MS. GATESMAN:
Q. If you observed, you probably documented. So even if there is not a map, cause you are an engineer, you like to document stuff, right?
A. Well, we have made the locations, yeah, we have located them. They are on the Edgeworth piece, I can tell you that.
Q. It can just say southeast corner, two spots.
A. Again, we can put them on a drawing but they won't be all of them because it's an interpretation -- you know, does this lump look like it was manmade or is this lump where it slid, you know, you'd would have to get a geotechnical engineer to evaluate it.
Q. You could just have one that said "no notation of concern" or something that says something.
A. Okay.
Q. In the application, the addendum, it's to get the special exception that was filed and I don't know if you can -- it was written and it says the existing site is not functional, the on site parking is extremely limited with a majority of the parking located 50 vertical feet below the entrance to the building, the
vertical distance and parking areas is difficult to achieve 88 compliance.

In some of the prior notes that I got from a right to know request, they discussed having a parking garage. So can't we make a parking garage with an elevator that goes 50 feet? Isn't that possible?
A. It's possible.
Q. Which would eliminate that one particular justification. The site -- when you said you did the initial evaluation at 625 Beaver Street, it's pretty much all the documentation shows an addition. Has anybody ever looked at it moving -- you can go almost to 25 feet to Beaver by just moving it.
A. Well, again, I don't think that level was done. It was different circumstances. Again, the scope of the work at the time when the architect looked at that school was for a lot much larger. I think it was 200 some thousand, 220,000.
Q. 232,000 .
A. Square feet. Where that came from, I don't know. I was given that was the area they needed. But that's what they were working
with which now \(I\) think the school building is about 165, 170. So that's a significant difference.
Q. So that explains why nothing ever was done there.
A. None that I am aware of.
Q. Then when you did the original geotechnical report on November 6, 2013, we talked a lot about red beds, colluvium soil, but in that particular report it doesn't have any mention of red beds at 625 Beaver Street.
A. No, there is actually coal below that and there was a lot of colluvial -- in other words, deposits, everything had run off the hill so it was uncontrolled fill was what was under the borings that were done there.
Q. And their bedrock on existing site is between 741 and 744 which is a much shorter differential between bedrock and where that thing is located there. I think -- have you met with any of the consultants - like after reading the Kilbuck 14 four pages, they have a lot of different things, that you should meet with the DEP prior to even designing and getting a blasting permit and all that kind of
stuff. Have you met with those, like DCNR and DEP?
A. Well, we met with Allegheny Conservation, we met with Allegheny Public Works for the highway, for the road, and as far as DEP, the only DEP permit that is required for this construction, because we would be disturbing more than one acre, is an MPDS permit but that goes through Allegheny Conservation. They review that on behalf of DEP.
Q. And do they have any, since the report came out, any additional requirements when dealing on sites like this? Cause the commission, the joint tack force that created that report had a bunch of advice but \(I\) don't know if it ever made it into the guidelines.
A. Not that I'm aware of. I know DEP is in the process of revising their manual for construction, but it hasn't been published yet.
Q. That's all I've got. Thank you.

MR. RESTAURI: Thank you very
much. Ms. Cavaliere, think we should take a break? It's 2:52. Let's be back at 3:10, please.

\section*{(RECESS TAKEN)}

MR. RESTAURI: The next person in the audience who wants to question these two gentlemen, please. Yes, sir? Doctor.

\section*{EXAMINATION (of Mr. Boward)}

BY DR. GARBER:
Q. Jordan Garber, 28 Myrtle Hill Road. I live right across from where the detention ponds are planned currently. So I just wanted to back out for a second to the picture here.

These three gentlemen have to make a decision on whether or not to allow this exception based on very simple criteria of whether the proposed use of the land would create a substantially different impact on the community, meaning not just Leet Township, but they're speaking and deciding for us who live here, a substantial impact than if the school use occurred, the same school on similar land somewhere else.

So you both I think mentioned that you had some awareness of the school board considering -- I'm sorry, considering the use
of the current site, and \(I\) just wanted to ask some more questions about that. But first, in terms of what you were talking about with blasting, the shock waves that extend out from this dampened loosening of the earth, I assume they spread out radially and may be modified by the density of the earth. Is that fair to say? So some areas may experience more, some 1 ess.

But my concern is the area where I 1 ive and the whole of Camp Meeting Road as it covers that one side of the site, do you have any concerns about Camp Meeting Road being affected by blast wave work or other ways that it may be impacted by earth moving or say the construction of the ponds, if one of those were to fail? Do you have any issues, concerns about the impact of this project on Camp Meeting Road that way?
A. I'11 start with the blasting question first. It's not been fully determined if they're going to require blasting for the excavation.
Q. Let's say it does.
A. If it does, then engineering analysis will have to be performed.
Q. Let's say it's done properly, all the calculations. Is it possible it could be affected, the substrate?
A. If the calculations are correct, if we are properly monitoring with seismographs, it should not affect the road system because what they did is they make sure that the vibrations -- there is frequency, there is velocities that are calculated to be sure that they're not going to affect structures and roadway systems. So, no, it shouldn't affect it if it's done properly, if it's engineered properly and implemented properly by the contractor.
Q. Is there any way that you can put an estimate, like a probability of one percent or half of one percent, one-tenth of one percent on there being some penetration of the substrate of the road by the shock waves?
A. I can't at this time.
Q. Even if it's done right, statistically.
A. I can't at this time. We would have to run through the analysis. But when the analysis is done, it's done in a way that what we call the peak particle velocity which is the shear
wave implemented by the blasting vibrations is at a value that would not damage roadway subgrades, roadway surfaces, structures.

So it's not a percentage - I know a lot of people like to see things done in a statistical percentage but engineers don't work that way. So there is really no way to quantify that very well. But it would require engineering analysis to be sure that we're keeping below that peak particle velocity and it has to be verified in the field as well.
Q. As far as the other --
A. The other aspects --
Q. Including the use of the road for construction vehicles, the earth moving equipment, the increased uses for the traffic during the period of construction and then the increased traffic volume afterwards.
A. That's getting a little bit beyond my expertise. I'm a geotechnical engineer but I will talk about -- I may let Geoff talk about that a ittle bit. The weight of the trucks, it will affect the roadway surface but roadways are designed based on truckloads, they are not designed based on car loads. So

I'm going to let Geoff talk about that.
As far as the storm water pond, the earth work and so forth, that should ultimately improve the stability of the road because when we go through our calculations that determine stability, we have to be sure that we're buttressing the road slope to make sure it won't fail into our new storm water pond and so forth.

So that should ultimately -- at least where we are doing the earth work, that should ultimately improve the roadway. As Geoff said, he has had conversations with entities about the roadway and our hope is that maybe they will get involved some, too, so we can even do more on the roadway to try to help stabilize it. Because right now it's not very stable.

As Geoff mentioned, there is storm water running alongside the road in uncontrolled fashion which is causing erosion. Erosion eroding out the tow of the slope along the road which is of course reducing the stability of the slope supporting the road.

The development would assist in
addressing all those conditions and should make a better situation for that section of the roadway. I'm going to let Geoff take it from there.

MR. PHILLIPS: Yeah, as far as Camp Meeting Road, it's a county road system so they have equipment load requirements for trucks. I think it's 80,000 pounds is the max. So none of the equipment that will be brought in here will exceed that capacity to be brought into the site. As far as --

DR. GARBER: Fully loaded?
MR. PHILLIPS: Correct. Because that's all the permitting they will be able to get.

DR. GARBER: So they will have to restrict themselves.

MR. PHILLIPS: That's correct. In other words, the state highway has a certain loading equipment, that they are only allowed to have certain loads at certain times of the day, and the county has the same thing.

As far as the stability, as Joe mentioned, there are already existing areas --- there is an area shown on the plan there
which I'm not quite sure which house was yours, but you see there is a cross-hatched area. If \(I\) can come over to the plan.

DR. GARBER: I live right there (indicating).

MR. PHILLIPS: This area right here is already sliding (indicating). So we're going to buttress this and improve this condition here as well as down along here where we put the driveways in and stuff like that. So there will be work adjacent to the road to improve what's there now as we do the grading. So we are not going to destabilize --

DR. GARBER: I have been there 31 years and there has been no slide there, but I'm sure you're both aware of the closure for several years of the far end of Camp Meeting Road.

MR. PHILLIPS: Yeah, up near the ball fields there.

DR. GARBER: So that great plan to have that community resource was put a kibosh on that. But we haven't had any slides right there.

Do you know how much that's going to cost and who is going to pay for that?

MR. PHILLIPS: For what?
DR. GARBER: For the buttressing.
MR. PHILLIPS: That's part of the school project, to fix that along there, because it is destabilized and they don't have the money and we need to fix that in order to put our road in.

And as far as the pond, it is not adjacent to the roadway. In other words, there will still be area between it and the roadway so that the road is not being impacted where the detention facility is.

DR. GARBER: So in terms of these detention facilities, despite the best engineering and materials and intentions and performance standards and all that, they do fail occasionally. Is there a -- do you calculate what the possibility is of a failure of a detention pond.

MR. PHILLIPS: We11, again, as has been mentioned before, as long as it is constructed according to the design and that it is put in -- the soils are all removed --
in other words, we're going to remove all the bad soils there. Where if it wasn't done and they started building the empilement on top of those soils, that's why it would fail. We're not proposing to do that.

As far as the failures, what most of them that I observed and have evaluated around the outlet structure is because what happens is you put a pipe through a dike and if you don't put the cutoff walls which are 90 degrees to keep water from creeping along there, that's usually where most of your failures are.

DR. GARBER: So it's not something that's in your area of expertise but I'm sure as engineers, like you do forensic analyses, you have seen these things fail. To ask this question of you may be a little bit outside of your area, but I will anyway.

In this design, the use of this land will require Camp Meeting Road be open not just because there are people that live all the way up it and because there are housing developments and already a hospital and already a school and it's a vital access,
you know, for all these people including a hospital. So like the main artery to the heart, if it fails, things can die.

MR. PHILLIPS: Right.
DR. GARBER: So have you seen other schools be placed in a location where there was only one road allowing people in and out? Because here there is intention to have two access roads to the school for buses and cars but it all depends on Camp Meeting Road which, as you have seen and know has failed repeatedly, is an imminent of situation that might fail before you ever get started on the construction in your experience with schools built in this region or anywhere.

MR. PHILLIPS: I know of two
schools. Peter -- Penn Trafford, they have one main entrance in and then at the back of the football stadium they have an emergency exit.

DR. GARBER: Where does that go?
MR. PHILLIPS: The emergency exit? DR. GARBER: A different road than the neighbors?

MR. PHILLIPS: It goes onto a side
street. So it's not a major street, it's a small side street.

DR. GARBER: We don't have
anything like that in this current configuration.

MR. PHILLIPS: No, we have an
entrance at one end and entrance at the other end. I don't know off the top of my head, but there are other schools that we have gone -and my sons have played soccer where that is the only road they come off of is the main road because it's in a more farm area and that's the only access they have.

DR. GARBER: So you have an
opinion as to whether that's advisable from a geotechnical standpoint? Knowing that there are risks of things happening that might close that one road, do you recommend to your clients that they make a provision for there to be some separate other egress?

MR. PHILLIPS: Well, the
regulations require -- the state regulations are that you have to have two means of ingress and egress into the school site for emergency exit. It does not stipulate that that exit or
egress, ingress/egress is only on the one main road.

DR. GARBER: So state regulations as such but as a parent, you know, I worry that we are putting our children in a situation where there is jeopardy more than there needs to be. So with this issue of failure of the road with buses traveling on it, it seems like there are some perils associated with that.

But again, you haven't seen a situation where a road -- I mean a school was built on a hill top 1 ike this. You said you had seen the one at Freedom that was built on a hill?

MR. PHILLIPS: Well, there was
Penn Trafford and Norwin is another high school that is built isolated. They only have one way in and one way out of that facility, other than they do have a residential street that it could go over to.

Now we looked at this site of bringing school buses up from Beaver through the residential zone, but it would require taking some of the houses because those roads
are not wide enough, you know, for school buses and stuff 1 ike that to bring it up through and around. And the school board decided they did not want to displace homeowners with this project.

DR. GARBER: I guess some people
know the history better than I. I guess they bought some houses and sold them.

MR. PHILLIPS: That was a previous superintendent at that time.

DR. GARBER: So just in terms of this question of substantially different impact, you both talked about the current site and your experience when they were talking about this project. Why can't there be a high school there? There is now, obviously. You said something about that it doesn't have the red bed problem but it does have some ground water and springs.

Then there was the issue of the flood plain and needing to have the possibility of mitigation. Could you tell us about mitigation of that? The flood plains.

MR. PHILLIPS: Yeah, the flood plain, what happens is it's like your bathtub.

DR. GARBER: I meant the process of getting mitigation credits and that kind of thing.

MR. PHILLIPS: Mitigation credits?
DR. GARBER: Yeah.
MR. PHILLIPS: What they require is you have to do an analysis that you cannot increase the water surface of the flood. So anybody adjacent to that area, if we go in and we fill that area in where the stadium is, it is now going to push more water over into other people's properties. So you are not allowed to do that unless you mitigate by buying another piece of property adjacent, excavating it down to that volume that you're displacing so that you can fill in that area. DR. GARBER: So this would be necessary if the high school was going to be built by filiing out back towards the --

MR. PHILLIPS: Where the stadium is.

DR. GARBER: If they weren't going to do that, is the flood plain an issue?

MR. PHILLIPS: Not if they are not going to do that. If they try to build where
the existing high school is, then there are other issues that come about such as where are you going to put the students. And those are things that the school board has to decide. DR. GARBER: That's a different kind of impact than the geotechnical impact, and \(I\) won't ask you to comment on it. MR. PHILLIPS: Correct. DR. GARBER: The issue of
substantially different impact by choosing to go through all of the steps of preparing the 1 and and buttressing the road and still having a very fragile road, single lane in each direction, curved 1 inear and plus exposure to landslide risk, as low as they might be, if everything is done perfectly 1 ike, you know, at costs that may be unbearable financially, the differential impact --

MR. PHILLIPS: There is a
difference because now if you are building down there, you are now impacting all those residents with the construction and everything that's there and not up here.

DR. GARBER: Construction meaning
noise and congestion?

MR. PHILLIPS: Noise and vehicles and everything.

DR. GARBER: So I will be exposed to that and all the people up Camp Meeting and below. I hear the cheers from the football games and soccer games and the PA. Everything comes up and echos up from the river. It's nice, actually, sometimes to hear the tooting of the horns but other times it's noise, like you say.

So that's a very different impact to say the people who live across the street or next to the high school would be affected by noise than to say the impact -- the risk of buses and cars not being able to get up and down the road and lives being disrupted by, not just traffic, but other events.

So in terms of the flood plain issue which seems to be a sticking point, was the initial evaluation -- is it also possible to use land that's not on the site as the exchange mitigation? Can you have land that's not owned by the school right there, they could buy it somewhere else?

MR. PHILLIPS: Well, that's what

I'm saying. They would have to find other property that is available near that vicinity, near Little Sewickley Creek, to be able to lower it to offset the volume that is being taken away by filling in where the stadium is. DR. GARBER: So that could be done locally. Could it be done more distantly? MR. PHILLIPS: No, because you don't -- the impact is right there. You can't do it upstream or you can't do it downstream. DR. GARBER: So the property for mitigation has to be right there? MR. PHILLIPS: Correct. DR. GARBER: If there is no fill going on, then you don't have to mitigate the flood plain?

MR. PHILLIPS: Correct.
DR. GARBER: So I'm not sure if the members of the Zoning Hearing Board have thought a lot about the question of this rejection of the current site because it was sort of -- we just can't do that cause of this flood plain problem. You know, I don't know, but I'd encourage you to think of that more. If it's not really an issue if construction is
done differently.
In your experience, both your senior, well-experienced experts in this field of supervision of construction, supervision of the engineering aspects of earth moving and pond building and such, I wonder what your opinion is. You said some things that were sort of impugning the process and the people involved. Do you think it goes as well as it should or 1 ike say a small town like ours needs to keep the budget down, that corners get cut, cost gets shaved and bad things happen.

MR. PHILLIPS: Well, projects of this size, most of the large projects that have funding that's public money, usually there isn't any corners cut and there is proper supervision and proper inspection and personne1 to do it. It's more, in our experience, where we've gone on the private side where you are working for development, where not necessarily they have gone to the utmost extremes and also, as we told the board here, that if they have on staff the geotechnical and expertise on their side to do
the proper review. Because they review the reports and they do give review letters that say, okay, well, have you looked at this or have you looked at that, to make sure that the risk is minimized on all sides?

DR. GARBER: Do you have any way
-- last question, I'm sorry to take so long. MR. RESTAURI: That's fine.

DR. GARBER: An estimate of what percentage of the budget for a project like this which is inflating up to 120 million dollars, what percentage of a budget should be allocated like they do for bonds or surety or whatever, to that process of appropriate oversight?

MR. PHILLIPS: It's usually 20
percent.
DR. GARBER: Twenty percent.
Thank you very much.
MR. SOSTER: Could I follow up?
Geoff, on the flood plain issue, is the issue with Little Sewickley Creek or the Ohio River?

MR. PHILLIPS: The backup is from the Ohio River.

MR. SOSTER: It's not Sewickley

Creek backing up this way, it's the Ohio River backing up this way?

MR. PHILLIPS: Yeah, the Ohio
River is backing up and pushing back off Little Sewickley Creek. So the dam that is on Ohio River is what's dictating what the elevation is.

MR. SOSTER: Have you done the analysis, \(I\) think it's called Heck 2 analysis, you have to back up water one foot? Has that just been -- as the gentleman said, is that something that you just said, well, we can't do it? Or have you done the analysis that says if we build this structure in either the floodway or flood plain, that we are going to back the water up above allowable?

MR. PHILLIPS: We have not run the calculations. It was based on our experience of the volume of fill that would have to go in there. We are not talking ten yards of fill, we are talking, you know, a hundred yards of fill. I mean a thousand -- sorry, a hundred thousand yards of fill would have to go in there because you have to be 18 inches higher than the flood plain, okay. So that amount of
fill going in there is that much volume that we would be displacing and water which would cause the elevation to rise that much.

MR. SOSTER: Are all those homes there and shopping center built in the flood p1ain?

MR. PHILLIPS: Yes.
MR. RESTAURI: Next person,
please, who would like to question?
MS. HYJEK: I just have one quick question. My name is Suzanne Hyjek.

BY MS. HYJEK:
Q. You talked about on this property you are building storm drains and retention ponds. Who is going to maintain the storm drains and who is going to maintain the retention ponds?
A. That will be maintained by the school district. As part of the NPDS permit that \(I\) mentioned earlier, you have to have a post construction storm water management plan and with that you have to have procedures and some of those procedures are after storm event that
the facilities need to be inspected, after every major event they have to go around and check all the structures to make sure there is no garbage in them, that they haven't filled up with leaves and sediments and stuff, and that especially with the parking lots in the wintertime, after they've salted or cindered or whatever, they are swept and that all material is cleaned up and properly disposed of. So there is an ongoing maintenance program that goes with that permit.
Q. So the school will have full responsibility for all that?
A. That is correct.
Q. You talked about moving the water 1 ines and the sewer 1 ines going up to Quaker Heights and everything.
A. Yes.
Q. So is the school also paying for that full cost?
A. The waterline is going to be looped around. As far as the sanitary 1 ine, we have to talk with the sewer authority because right now there is problems with that sewer 1 ine. The erosion has -- I've made the engineer aware of
the problems we observed when we walked up there. So those are existing conditions. So it's going to be a combination, but there is money in the budget for some of that. Not the total cost.
Q. From the school.
A. Correct.
Q. So the rest of it, we in Leet Township will be paying for that.
A. Well, when I talk about -- let me rephrase. I talk about stakeholders and the stakeholders is give and take. In other words, there are situations where there are permit fees and things like that that the school district would have to be tap fees and things like that that could possibly be waived in order for us to spend the money to fix some of those things.

It's the same thing with the county road system. They don't have the money right now, but they have the ability to wave some of those fees that we may have to pay in order to use that money to fix the roads and stuff like that.
Q. And to add that extra lane, the school would
be paying that?
A. The school is paying for the realignment of the road up at the top and any work that we do down at the other entrance. The whole road as it spans, that's what we have to talk to the county about.
Q. The school will be rebuilding that part, lower part?
A. If I may, I will come over.
Q. Down where the gates are.
A. It's a little below that, but yes. The lower entrance, this is Camp Meeting Road coming up. This is the location of what they call the pump house. It's down over the edge but most of the local people know where it is. Just up from that, between it and the gates are about right here, so about halfway through there.

So there will be road improvements all along here, there will be road improvements all along down to Beaver. We are not really doing any improvements in this loop, the horseshoe, but we are doing improvements along the edge of the road here. And then we are actually rerouting the road over into the school property and swinging back over. So
this area here will all be part of that project (indicating).
Q. So the county has agreed to do this? Because the county builds it, you don't.
A. We will build it, the county will approve it.
Q. Which typically takes a couple years to do cause the engineers have to come out.
A. We had preliminary meetings and again with all the agencies, all the authorities, and their engineers, preliminary wise, but they have not seen this plan yet because we're at the beginning stages.
Q. Right.
A. All of that will be submitted to them, will be reviewed, and we will retain occupancy permits for these two driveways and the road work.
Q. So the county will let you build it.
A. That's correct.
Q. That will be the first one. That's it. MR. RESTAURI: By "you," we are talking about the school district. MR. PHILLIPS: Correct. MS. HYJEK: Not you personally. MR. RESTAURI: I wanted to be clear.

MR. PHILLIPS: I will be going down there with my little flag.

EXAMINATION (of Mr. Phillips)

BY MS. INNAMORATO:
Q. Janet Innamorato. Mr. Phillips, I think that you did earlier today, but we couldn't see through people, but can you point out where the sandstone ridge is that conceivably needs to be --
A. It comes out through here, right down the middle of what's being proposed (indicating). And this is where school is and that's where we met there. Right here is the house, the Walker house location. So the school would go here. So that area would be lowered which means lowering it is going to go into the sandstone.
Q. And lowering by how far?
A. We don't know at this time. When I was building a large area, \(I\) was dropping that 40 feet.
Q. In more recent drafts, we saw 30 feet?
A. That, I can't say to it. I don't see an
elevation on there. Yeah, that hill there is about 30 feet, yes.
Q. Thirty feet, okay, thank you. My first question is, if \(I\) can make this large enough so there is some chance \(I\) can read it. In the preliminary report of due diligence you stated observations revealed such elements as significant landslide activity, springs and massive, very hard bedrock. You state also in this report that you believe that blasting will be necessary. Now today you indicated that you were not sure, that you were not a hundred percent certain blasting would be necessary.
A. Well, to get down through the thickness of rock, the 40 feet that \(I\) talked about, and that's rock. Up here the 30 feet we are talking about is not all rock. There is about 10 to 15 feet of material on top.

So in our eyes, at that time, to go through 40 feet of rock, you would need to blast. But if we're only digging 10 to 15 feet, they may be able to use equipment to do that.
Q. So, in other words, the 40 feet that you were
thinking of before was really 65 feet.
A. Possibly in elevation, yes, ma'am.
Q. I see. I see. What would you say the likelihood of blasting necessity is now? I know you said it's not hundred percent. I know you said you hate percentages but -A. Well, we drilled and they did core the rock. As you go deeper in the rock, it does get a lot harder. So the majority of it \(I\) think would probably be done without having to blast. But we don't have the final configuration of what's here so that's why we don't --

MR. BOWARD: There needs to be more analysis done on that. The upper portion of the sandstone is more weathered because it's closer to the surface and, like Geoff said, you get deeper, there is less weathering, it gets harder. We need to analyze that specific to the final design.

MS. INNAMORATO: Okay, thank you very much.

BY MS. INNAMORATO:
Q. So if you needed to blast -- and you have testified earlier that on the hillsides that
you don't intend to disturb, you will not be doing any protection or any changes, you will not be disturbing them in any fashion.
A. Right, we are keeping this all wooded here. So we weren't proposing -- and then all the area out here at the end which is in Edgeworth, none of that is going to be done. And my understanding from the architect, and John Thomas testified, he had showed a slope here that he wants them not to do that.

So the only slopes that are being
constructed are really in this region right here, okay. So none of these -- out here will al1 stay vegetative, will all stay there, and we are not changing any characteristics along there that would destabilize it, other than mother nature.
Q. But you have indicated that really most of the land here is metastable already; is that correct?
A. Yes.
Q. So is there some likelihood that blasting will have some impact on those hillsides that you don't intend to disturb?
A. That is what the calculations do for the
blasting is, you know, if there is any vibrations here, that it's limited to a smaller area and does not migrate into these other areas.
Q. Yes. But in fact this is a pretty steep slope. These are pretty steep slopes here.
A. On the back side, yes.
Q. You will potentially be blasting all the way along here?
A. No, we only anticipate it being here because these are all higher (indicating).

MR. BOWARD: I'm not sure if Geoff
knows. In the software we have for slope stability, this is able to enter a seismic factor. So when we are going through the calculations for the blasting and we determine what the various velocities are, you have to look vertically and horizontally. It's basically a sound wave that's entered into the program. And that is entered in and that has an effect on the factor of safety of the slope. So that will be analyzed if blasting is required. It will be analyzed as part of the slope stability analysis.

MS. INNAMORATO: Thank you. Thank
you.
BY MS. INNAMORATO:
Q. Then earlier in this same report you say: Based on our observation, we contacted Quaker Valley School District and indicated that this particular site may not be suitable from the typical budget perspective even if the site was effectively gifted or donated to Quaker Valley School District.

So did you change your mind or did Quaker Valley School District tell you go ahead anyway?
A. What do you mean, go ahead anyway? To evaluate it? No, we put in that statement that this site is going to require a significant amount of work and cost to make it a buildable site.
Q. Right.
A. And even if this property was given to them, it doesn't necessarily mean that's the best option.
Q. You said may not be workable.
A. Correct, from a financial standpoint.
Q. I see. So again, did the school district come to you and say, we want you to go ahead
regardless of that, or did you discover something in your further exploration that made you think we were mistaken?
A. No, we didn't find any -- that was after we had done the due diligence. So we reported to them that here are all the plusses, here are all the minuses, for them to make their decision on whether to buy or not buy the property. We didn't make that decision.
Q. Okay. Mr. Phillips, do slopes exceeding 25 percent exist on the site?
A. There are some back here along this back steep area, but this proposed development is not involved in that.
Q. Do slopes exist where you intend on disturbing grading or building that go up to 25 percent?
A. Not in this area where we're proposing or on top of the ridge where the development is. Cause again \(I\) said back in this area and out here on the end of Edgeworth here.

MS. INNAMORATO: What would you
say the steepest slopes are that are over there where you intend on building your secondary access road?

MR. PHILLIPS: Most of them are
three-to-one or 1 ess.
MS. INNAMORATO: Which is what
percent?
MR. PHILLIPS: Thirty-three
percent.
MS. INNAMORATO: Three-to-one.
MR. PHILLIPS: Right.
MS. INNAMORATO: And two-to-one is what?

MR. PHILLIPS: Fifty percent.
MS. INNAMORATO: So if the slope says it's two-to-one on the drawings, on the topographic maps, then isn't that slope steeper than 25 percent?

MR. PHILLIPS: No, when you do the percentage, it's opposite.

MS. INNAMORATO: Okay. Okay.
MR. PHILLIPS: In other words, the two-to-one slope is 50 percent, three-to-one slope, which is a flatter slope, is 33 percent.
Q. I see. Roughly, on this plan, how many acres wil1 be disturbed?
A. I did not do the calculation, but Mr. Thomas reported 40 acres.
Q. And how many slopes do you anticipate needing to terrace with your plan that you discussed earlier?
A. The terracing will happen on all fill slopes. All the slopes will be stair stepped back into the hillside.

MR. BOWARD: That's subsurface.
You won't see it on the surface.
MS. INNAMORATO: Okay.
BY MS. INNAMORATO:
Q. But how many different places will you be doing that?
A. It will be done here, it will be done here, it will be done right here. All of this is all cut. They're eliminating this. This was one slope here (indicating). But all of this is basically you are coming in, cutting the top of the hill off, and so there is no slope, it's just being excavated to that amount.
Q. So there will be three major areas --
A. Yes. And most over here along Camp Meeting Road.
Q. And roughly how many acres do you think is involved in the terracing?
A. I would say probably about 20 acres here.
Q. Twenty acres, okay. So you described putting drains in on each bench to get water away from it. In fact, a lot of information was designed to say how to get water away from areas to avoid dangers of landsiide. I want to know if you have some thought about how that vegetation is affected by you removing all the water from an area.

MR. BOWARD: That's subsurface water, by the way. That would be water that's coming subsurface. So we are trying to keep that fill embankment dry so it remains shear strength.

MS. INNAMORATO: So the terrace is how deep below the surface?

MR. BOWARD: We11, they are going to vary. The depth of the stair steps are going to vary. I wish \(I\) had a picture, but it's probably not going to affect plant life much, if at all.

MS. INNAMORATO: They said at my house you need French drains all around the house. Then they said too bad you can't plant anything because of all the stone there.

MR. BOWARD: This particular case
will have negligible effect on vegetation because vegetation is typically relying on the more surficial ground water regimen than that deep regimen we are talking about here.

MS. INNAMORATO: So trees?
MR. BOWARD: Trees would be
viable. We have done this type of construction -- well, it's standard of care. I have been doing this since I started in the business. I learned from other geotechnical engineers that mentored me and they put vegetation on the slopes, trees and so forth, and they seem to vegetate very well.

MS. INNAMORATO: All right, thank you.
BY MS. INNAMORATO:
Q. Is removing colluvial soils called cut?
A. Yes, we will be excavating and digging them out, yes.
Q. And there was a figure put forward earlier that you anticipate approximately -- I think Mr. Thomas said 375,000 cubic yards.
A. That sounds about right, yes.
Q. Does that include all the colluvial soil?
A. I don't know. I can't answer that question.
Q. Okay. Mr. Thomas also testified that you would balance -- that the cut and fill would balance each other on this site. Do you think, based on your expertise, that that is the case given the amount and depth of the colluvial soils and where all they are?
A. Well, you have to remember, we're going to remove the colluvium soils but we are going to be filling it back in with good soil, and we are going to take the colluvium soils and mix it with good material and make it reusable. So there is no material leaving the site. It wil1 all be reused. So that's what they mean by balanced. In other words, we're not going to have to remove any of this material from the site.

MR. BOWARD: The main reason colluvial soils are a problem is because mother nature has caused them to move. They're derived from soils and rocks from higher elevations and migrated down due to gravity. So they are not in a very compact state.

So once you remove them and mix them with some of the rock fragments we are
excavating out, then you can have it tested in the laboratory to determine how much you have to compact it to increase its shear strength. So we have been putting the colluvial soil back mixed with other materials, but it will be compacted to a much higher shear strength than its natural conditions. So it would be acceptable, suitable material to reuse as fil 1 .

Colluvial soil is not necessarily bad. It's called colluvial, it's bad because of how far it's moved and density in its natural state. There isn't any particular mineral or anything in this colluvial soil for the most part that would make it unsuitable. MS. INNAMORATO: When the reports
say that the sandstone is underlain with Pittsburgh red bed, they mean that underneath this sandstone ridge there is red bed? MR. BOWARD: The red beds come in more than one form. The red bed material is a strata and it's typically purple, red, maroon, and sometimes gray clay. The clay is what we are worried about. That is a soil. Clay is a soil. But the red beds also are part of the
bedrock strata.
So you can find red beds as a claystone, as a clay shale, even as a shale. The bedrock isn't as much of a problem cause bedrock is so dense.

So we are not really concerned about the stability of the red bed bedrock. It's the red bed soils, the clays that we are really concerned about. Because when those clays get wet, they lose most of their shear strength. So that has to come out and mixed and processed to be viable for reuse again.

MS. INNAMORATO: So when you say it's underlain with Pittsburgh red bed, do you know from your borings what kind of red bed it is?

MR. BOWARD: Yes, there are boring logs that describe the material. We found red bed claystone, red bed clay shale, I think, and red bed silt stone. This red bed comes in the form of silt stone. So we were able to identify the type. This red bed material was so hard, you couldn't shovel it out. We had to quarry through it. Cause it's bedrock.

Like I said, the real problem is
the red bed clays, the soil portion, because it's so weak. It just doesn't have the strength bedrock has.

MS. INNAMORATO: So if it's
underneath the stone, you are not worried about it?

MR. BOWARD: No. If it is in the bedrock strata, it isn't of concern. It's the red bed soils that are the biggest concern. That's what we have to remove from those areas.

MS. INNAMORATO: So is it correct colluvium and red bed is the same thing?

MR. BOWARD: No, not necessarily,
no. Red bed soils is a type of strata that was naturally 1 aid down as a sedimentary deposit. In this area, most of the sedimentary deposits are pretty horizontal in 1ayers.

There is some variation cause of tectonic activity over the millions of years. It's fairly horizontal and it was laid down that way. Colluvium doesn't have to be red beds, it can be a soil that has basically moved down slope due to gravity.

Know this. All landslides are composed of colluvial soil but not all colluvial soil is a landslide. Colluvial soil can creep down very slowly, it's a technical term, and it never develops into a landslide. But when it develops into a landslide, of course, even if it wasn't colluvial soil, now it's colluvial soil cause it's moved. And not all red beds are colluvial soil because they haven't all resulted in landslides or movement down slope.

MR. PHILLIPS: So what happened is the top of this hill over time has gotten shorter and that material has moved down and is now deposited here at the lower elevation. And that's where the concern is. The section -- if you take a knife and look at a cross-section of this, the material that's below the rock and through here, it's okay. It's good and hard. It's just the surface areas where it slid that's where the problem is.

BY MS. INNAMORATO:
Q. And you are going to take all of that out, mix that --
A. And reuse it.
Q. Okay.
A. And put it properly in because right now it's just dumped.
Q. Okay. If there are 20 acres there, will those 20 acres be clearcut?
A. Portions of it. But some of it won't. But again, the architect -- again, this will be tweaked by the architect. He's been advised to try to keep as many of the trees on site as possible.
Q. Okay. And 20 acres for the plateau, will that be clearcut?
A. Again, it depends on what elevation. If they don't go down to 30 feet then, no, it won't have to.
Q. Have you any estimate of the cost of the rough grading now that it's 40 acres instead of the 50 that you talked about?
A. For this, I think the cost estimate for the site work was somewhere in the neighborhood of eight mil1ion dollars.
Q. Does that seem reasonable to you?
A. For this site here, yeah. And they're hoping to make it less because they're wanting to
work with the elevations that are out there, the architect.
Q. I see. Earlier you talked about looking at other sites, the feasibility of other sites including the current site.
A. Yes, ma'am.
Q. This school district has 11 municipalities. How many different municipalities did you look at sites in?
A. We looked at Bel 1 Acres, Leet, Leet Township, we looked at Aleppo. What's the one below Aleppo?
Q. Osborne?
A. I can't remember the one below that. There was a couple pieces of property there.
Q. Did you do borings in all of those?
A. No, we didn't.
Q. Where did you do borings?
A. We did here at this property because that was after they selected three -- there was like ten sites, they narrowed it down to five, then narrowed it down to three, and those three we did our evaluation on and then they had narrowed it down to this one on the Scrabbit site and Scrabbit we didn't get permission to
drill. This site we did get permission to get drilled. So this site here is the only one we drilled (indicating).
Q. So how do you know there is red bed on the other sites?
A. Because of the existing published geology information, the surveys that have been done. There is other published information and geotechnical engineers share information of projects done throughout the area.
Q. Okay, thank you very much for your time. Thank you.

MR. RESTAURI: Mr. Jasper?
MR. JASPER: One of the things going last, most of the questions have been asked.

EXAMINATION (of Mr. Phil1ips)

BY MR. JASPER:
Q. Our home is right here, okay (indicating). You're doing all this benching over here and I guess this you are not going to do benching anymore?
A. My understanding is that will not be there
anymore.
Q. The contour 1 ines \(100 k\) pretty much the same to me, and \(I\) am just a layman so \(I\) don't know. I know that this slope coming down here is unstable. It's always moving. I mean we have to deal with it just 1 ike the lady said. We put in French drains inside, outside of the house, all kind of things to deal with it. And we can tell that the ground is moving.

So I don't understand. What I heard you say is you are going to dig a whole bunch of dirt out of here, dig a whole bunch of dirt over here to make this retention pond, and you are kind of using that dirt maybe to make these benches? Like it's a use of the material rather than just being driven by the contours of the 1 and.

So I'm wondering why you are not using that -- some of that over here for all the positive reasons \(I\) heard about benching and drainage and soil stability. Because you start doing things here, doing construction, even if you don't do blasting, there is other stuff. You said you were going to do rock crushing, you are going to be moving a whole
he bunch of heavy machinery and stuff like that.
A. Yeah, there will be cranes.
Q. So there will be a lot of vibration and shaking on that hill.
A. Yes.
Q. So we know that this is 1 andsitide prone. Why isn't it going to make it worse and why are you not suggesting doing this kind of benching over here to improve it?
A. Well, to answer your question, originally the plan that \(I\) put together for the 50 acres did include doing that.
Q. Okay.
A. But the price tag for that project of 50 acres --
Q. What \(I\) heard is you are over-engineering this to take care of all these eventualities and I am hearing that you are cutting corners.
A. I am not cutting corners. The school district sized back the project.

Now as far as the woods are still here, the trees are still here. We are going to take away the water that's coming down that slope over into here. So we are going to
reduce the amount of water that's surface water. As far as --
Q. But the colluvial stuff is what's sitting on top.
A. Correct. And we're trying to keep -- because the school district heard from the public don't take down all the trees, so we're not clear cutting. So we're doing select cutting.
Q. The trees hang on to everything. But the trees topple over. We see them topple over all the time.
A. Correct. So to answer your question, I'm not the guy that makes that decision finally of what is done here. I can only engineer what properly is left to be done. So that part of it, my understanding was that it was eliminated of doing any filling in here because the residents didn't want a slope being built above. But in actuality, we were improving the condition with our slope. But everybody saw it as a Walmart-Kilbuck site, that this slope was all going to come down into here (indicating). So that's all I can say.
Q. What \(I\) am saying now is the school probably
won't wind up in our living room but the hillside could.
A. Over time, yes.
Q. Well, that's comforting.
A. But you bought that house with that all along.
Q. Thirty years ago I was willing to live with gradual. But if this accelerates it, it's no longer gradual.
A. We're trying to prevent it from accelerating.
Q. I know, but Boeing tried to fly the 737 Max, too, and that failed. I believe in engineering, but \(I\) also believe in engineering doesn't always work.
A. Well, we are working with mother nature.
Q. Yeah, well --
A. And gravity.
Q. This is a --
A. A buyer retention guard for water quality.
Q. Somebody asked about a cloud burst. The water just can't -- the capacity of this system to convey it all over here and then bring it down into Leetsdale, what if this overflows?
A. This whole system is designed for the hundred year storm. So if it's over the hundred year storm, then it's going to come over. And this
whole boulevard and a lot of these other places are all going to be flooded anyway from other things.
Q. There is a cart path that comes down from where the house used to be located. It comes down here and then it comes right around here and then there is a storm drain that Leetsdale put in here because they thought that they needed that storm drain to take water coming off the hill.
A. Yeah, there is a right of way that comes up through here.
Q. That is a conduit for water coming down the hill, too. So if this overflows, I'm just saying again, it's going to be in our living room.
A. Again, I will say, if I'm the engineer, those are concerns that \(I\) 'm going to design this property to take care of.

MR. BOWARD: Can I interject a couple items?

MR. DePAUL: Hold on. I don't think there is a question posed. You don't have a question for him, do you, Mr. Jasper?

MR. BOWARD: He is talking about
some geotechnical issues.
MR. JASPER: We11, I am looking for any expert that can allay my concerns.

MR. RESTAURI: He was asking the questions to both.

MR. DePAUL: You are allowed to ask whatever you want.

MR. RESTAURI: Please.
MR. JASPER: I don't care.
Whoever is the expert.
MR. BOWARD: I want to point out a couple things that are being missed here. As far as the hillside goes, above your house, it's been in that condition for years, it's been metastable for years. What we're going to do is not going to change that. It's going to still be metastable. If nothing is done there, if nobody does anything, it will still be metastable.

The risk will be the same except that the system, the storm water system that's being proposed to control the water on the site should remove some of the storm water that's now flowing down that hillside. It should make it a ittle bit more stable. I
can't say it's going to make it so stable that it won't move, I would not say that, but what I'm saying is it should make it somewhat more stable.

MR. JASPER: How about all the vibration during construction?

MR. BOWARD: Like I said before, part of the process, if we were engaged -- if we are engaged in the next phase, would be to analyze those conditions with respect to vibrations. Because the slope stability analysis allows you to enter a seismic factor into the analysis which include the vibrations and the effect on the slope. It's in there on the software, so that would be entered, as well as to try to determine what effect it has on the slope.

The final thing I'd like to say
is, as far as the storm water goes, when you
look at the hundred year storm, if no
development has taken place and there are no controls on the storm water, other than what's there, are there now, which is basically nothing, you are going to have more water coming down to your house than you are going
to have after they build that up there and put in a storm water control system.

So it's actually improving the storm water that will reach your house. So you have that as well. So I don't see really anything happening here other than improvements to the down slope properties, at least with respect to geotechnical and strictly with respect to storm water considerations. I'm not going to go beyond that, to the houses down below.

MR. DePAUL: If I may, I need to interject and object on the record to this and make it clear for the record. This testimony was provided on the record after Mr. Phillips gave an answer that maybe the school district didn't like, and there was some signaling that happened over here to the witness and prodding the witness to interject. He then interjected and provided a monologue that was nonresponsive. So I will put that on the record.

MR. BOWARD: I'm sorry if you didn't like my answer but that's the facts of the case here. As an engineer, I'm providing
them to you to make sure you are educated. I completely understand why you are concerned. I would be, too, if it were my property and somebody is developing up above it. But I'm trying to assure you that if the engineering is done properly, it should improve conditions to some degree on your property with respect to geotechnical and storm water conditions. I can't say anything else.

MR. DePAUL: Same objection.
MR. RESTAURI: Understood. Noted.
Mr. Phillips, do you have anything further?
MR. PHILLIPS: Other than that, the water issue coming down along this private road which is --

BY MR. JASPER:
Q. It's a cart path, undeveloped.
A. Does anybody use that?
Q. We used to walk our dogs there.
A. Cause there are measures that need to be done to improve that condition. It's directing a channel down to your property.
Q. Yeah. So if this lets loose up here, that's where it comes.
A. Right. But now that we're aware of this
situation which again we do these things when we get into the design, we can maybe alleviate that by directing it to another place so that it doesn't impact your property.
Q. I think you answered my question before because when I look at the slopes, you are doing things to stabilize it over here but choosing not to do it here.
A. This site plan does not.
Q. It's because of cost.
A. This site plan, yes.
Q. That doesn't make me too confident.
A. But others who want trees to stay don't want us to do that.
Q. I am not the only one down here. There are plenty of other people that I'm sure have the same concern.
A. I understand. My understanding is there will be meetings with the public by the architect team and probably other engineering teams to 1isten to the public as far as some of these specific concerns. They want to be good neighbors. I mean they are not here, you know --
Q. The only other point \(I\) have is \(I\) have heard a
lot of talk in this meeting and before about bonding and insurance and stuff like that. You know, if I'm a homeowner down here and I don't have any cracks in my foundation right now, or maybe I have a crack but it gets bigger and \(I\) perceive that there is damage, if I communicate that to you or the contractor or whoever is doing the work or the school district or whatever, there is an insurance company in the middle and they're not just going to write me a check and say "here is \$10,000, go fix it."

So the burden of proof is really on me. Anybody down here who thinks they have been damaged by what's going on up here has to prove it and that's a pretty steep burden.
A. Well, especially with the programs that we have been involved in in large construction which has blasting in at this time, they come in and they do a radius, they go through with video cameras and do all of that. And that's an insurance company doing it. But they identify existing conditions and then come back and redo the whole thing to say, okay, this did happen after the fact.
Q. And they are just building their case to deny my claim. That's right. Well, I appreciate having the opportunity to voice our concerns. MR. RESTAURI: Thank you.

Mr. Phillips, with respect to Mr. Jasper's question -- and I understand about the environmental concerns and the trees and so on -- is there some way to accomplish both?

MR. PHILLIPS: Not really. Cause you have to remove the soil that's under the trees.

MR. RESTAURI: Yes.
MR. PHILLIPS: And put it back. So you can't just go in and dig around the roots. You would have to remove all these trees, build the slopes and then come back and plant trees.

MR. RESTAURI: And what's wrong with that?

MR. PHILLIPS: There isn't. But somebody has to make that decision.

MR. RESTAURI: So it's as
Mr. Jasper said, it can be done, it's just really expensive.

MR. PHILLIPS: Correct. And my
understanding was that Mr. Thomas - I think he testified that he was directed by the board to minimize any kind of slopes above the residence here because it was of concern at that time. Now if that is changed, then plans can change.

MR. RESTAURI: Are you aware of anything else like that with respect to your work or Mr. Boward's work where there was a recommendation made that was removed because of cost?

MR. PHILLIPS: We11, they
downsized, they didn't build all the original buildings. They are moving the stadium up here. They don't have all the practice fields that they were going to have. The administration --

MR. RESTAURI: Anything from a geotechnical landsliding, noise --

MR. PHILLIPS: Because the footprint of the development has shrunk, the amount of earth work has shrunk, so the amount of geotechnical impact has shrunk.

MR. BOWARD: We didn't necessarily recommend that these other slopes that are not
being touched now be provided with fill embankments. Early on in the due diligence, when Geoff was looking at possible layouts of the site to achieve that 50 acres, it was required to put a fill there to get a wide enough area on top to achieve 50 acres.

Now that they reduced the acreage,
you don't need that fill embankment to do that. You can put it elsewhere. So we weren't recommending putting a fill embankment there to stabilize the slope, we were just coming up with what could be done to make sure that fill embankment was stable, that you need to put there to give you 50 acres. But that's changed now. Am I making sense to you?

MR. RESTAURI: Kind of, but not
exactly. So are you saying that that drawing contains information that was accurate at the time the project was bigger, now it's smaller but the information hasn't been updated?

MR. BOWARD: No, I'm not saying
that. It was a bigger project and because of that there was going to be more earth work and that meant more fill slopes to grade the flat pad on top. It's been reduced in size, the
amount of acreage they need, so we don't need all those fill slopes.

So the area we're concerned about the stability of the slope is no longer a fill slope. It's not going to be touched. Because they've changed the layout. It's a reduced area they have up on top.

MR. RESTAURI: So does that mean, first of all, this drawing is accurate as of the reduced size of the footprint?

MR. BOWARD: That's correct.
MR. RESTAURI: And are we saying that Mr. Jasper's concern is as Mr. Phillips testified about it?

MR. BOWARD: I think what Geoff said was accurate.

MR. RESTAURI: Okay, we're good. Thank you.

MR. MICHAEL: Vince, I just have one point bugging me and \(I\) want to clarify.

MR. RESTAURI: Okay.
MR. MICHAEL: When they say "we would have to take out the trees and put in new trees," they're going to be taking out 60 foot maples, but they are not going to be
replacing them with 60 foot maples; is that correct?

MR. PHILLIPS: That's correct.
MR. MICHAEL: It might be a ten foot maple or smaller.

MR. PHILLIPS: Right. On these slopes and stuff, to re-vegetate and put trees back that will obviously grow to 60 foot trees.

MR. MICHAEL: But none of us will be here.

MR. PHILLIPS: I thought you said you weren't dying. You told me that wasn't a guarantee.

MR. RESTAURI: Will there be enough of the smaller trees planted so the root systems will have the equivalent effect with respect to water runoff?

MR. PHILLIPS: There will be other vegetation.

MR. BOWARD: Not initially, it won't be, but as they grow --

MR. RESTAURI: The overall impact that the combined types of vegetation will manage their own.

MR. BOWARD: To some degree. Geoff is already managing a lot of the runoff with the storm water system up there.

MR. PHILLIPS: But all these areas disturbed, we have to make sure they have ground cover, in other words, grass, or on the slope, you know, vegetated to 70 percent before they will release the permit and any requirements.

MR. RESTAURI: Are there any persons on zoom who wish to question the witnesses? Is there any redirect of the witnesses?

MR. GRAMC: No, sir.
MR. RESTAURI: Is there any --
Mr. Miller, anything?
MR. MILLER: No. Thank you.
MR. RESTAURI: Any recross of the witnesses?

MR. DePAUL: No, sir.
MR. RESTAURI: Yes, ma'am?
CROSS-EXAMINATION (of Mr. Phillips)

BY MS. TURNBULL:
Q. Do you know how many one hundred year rain events we have had in Leet Township in the 1ast five years, 10 years, 15 years?
A. Well, I am not over a hundred years old so I am not sure.
Q. But that's a standard that comes from somebody else, that is not a personal judgment, correct?
A. The situation is this. Due to the technology age and the precision of all our weather forecasting, they 1 ike to put 1 ittle dots all over the place. So what happens is, what in the past would have set a hundred year storm, now they're quoted saying it's a 98 year storm, this one is a 99.4 storm. So it's not quite a hundred year storm. So it's very difficult to say that.
Q. Do you know how many over 90 year standards we have had?
A. The situation is you can only look at whether the Ohio River has experienced in this location up to the hundred year flood elevation, and I'm not sure that the stadium has been totally flooded for some time.
Q. So the measure is the height of the river
rather than the amount of --
A. That would be the only way to really gauge, to say has there been a hundred year storm here. But, for instance, \(I\) could go right out here and these thunder clouds, it could be pouring, the intensity, the amount of volume of water at this parking lot for a hundred year storm but 300 feet down the road it isn't. So it's very --
Q. How do you design to it then? What does that mean when you say that you are designing to a hundred year storm?
A. What it is, there has been -- well, there is not \(a\) hundred years worth of data yet, in other words, to determine it.
Q. So what do you design to?
A. It is a curve that they have projected, okay, and for the hundred year storm they have come up with amount of rain based on taking that curve and projecting it past 75 cause they have data points all along to determine that this frequency is how much rain falls, how many inches of rain. And in this area, for a hundred year storm, that amount of rain is in the neighborhood of eight inches.
Q. In what period of time?
A. Eight inches of volume.
Q. In a 24 hour period of time?
A. No, in a one hour period of time. So it's a significant amount. Most storms that we experience are in the neighborhood of 15 to 20 years, that everybody thinks is a really bad storm. It's only more -- like a hurricane, if we had Agnes that came through, this hurricane that came through, there were certain areas that got hit harder than others. If it sat there the two years, yeah, you might have a hundred year storm.
Q. So when you say that you have a high degree of confidence that you can, you would design this site to the specification of a hundred year storm, to provide for that, in your mind or in a layman's terms it could accommodate up to eight inches of water down to an hour.
A. Across the whole is surface, that volume of water.
Q. So the retention ponds, all of that will be designed to accommodate that level.
A. That's correct. The storm system and everything would collect all of that and
contain it. Now Quaker Heights, all that water will come down through there, so that's also what we would do as far as the channel down through there. We may, in conjunction with the county, reconfigure some of that, slow the water down and basically keep all the sediments and erosion from coming down into that pipe.
Q. I heard what \(I\) believe is potentially contradictory testimony between you two gentlemen, and \(I\) want to have it clarified. I believe you testified that the reason why this hillside directly -- this proposed undisturbed area above the residential properties of Leetsdale was not -- you weren't going to touch that hillside because it was a preference of the residents to keep the trees; is that correct?
A. It was two parts. The plan that \(I\) put together for the due diligence was published and people saw that the school district heard from residents -- and I'm only getting this through the board telling us -- that there was a major concern that that hillside was being built right above their houses and that the
impact of that potentially sliding down like Kilbuck, they were very concerned about that. And so the district took that concern and directed Mr. Thomas to minimize any kind of grading in that area.
Q. And do you understand that that was based on surveys or anecdotal feedback?
A. That, \(I\) can't answer. That was the direction that he was given. As far as our design part, we needed to make that - you see how narrow the development is. In order to make it wider, we needed to push that and build that slope. But now that they've narrowed it there, which is what Mr. Thomas did to minimize that, no work is being proposed in that area.
Q. So it's not so much about a choice between a stable, more stable slope and more stable engineered slope and trees, it's really about now the site is being designed or proposed in a way that you no longer need to engineer that hillside in order to accommodate the activity at the top; is that correct?
A. Sort of. Majority of that \(I\) would say is correct, other than the trees came into effect
of the people in the rest of the community saying we love the trees there, we want to keep as many as possible. So there was feedback.
Q. There could have been a more generalized community aesthetic preference or environmental concern about the number of trees, number of mature trees.
A. Right. So my understanding is to minimize any proposed slope above the residents here and that's what's been done here.
Q. So it's not necessarily about neighbor impacts or making that hillside any more stable from an engineering perspective, other than taking the water off the hillside to the extent that you can for the improvements that you are making.
A. Yeah, I mean if the residents would iike that to be more stable with the new slope and they don't have a problem with removing the trees, I'm sure the design can accommodate that.
Q. If the district chooses to pay for that, cause I'm assuming it would be more expensive to do more benching on that hillside than it is to leave it alone and leave the trees.
A. No. But if you see to the north, all the parking lot over there, they would not need to build all of that and disturb that area over there where that slope is. They could move over everything this way (indicating).
Q. Can you show what the alternative would look like that would result in more engineered stability on the hillside?
A. So this area here, you go straight across here. So you have this area here that could be developed, instead of pushing this parking lot to the north area out here, you could possibly move it over into this area and build the slope up right here. So you are just switching, not necessarily the economics because you are taking away having to build this slope and we're building it over here (indicating).
Q. I appreciate you pointing that out and exploring that alternative.
A. The only thing is, we would be removing the trees that are here which would be behind Mr. Michael's house, cause he is right here, part of it, and we would have to plant new trees and buff -- we would probably create a
buffer here of a berm or new vegetation to screen all of that. And that would be larger like pine trees, things like that. They wouldn't be hard woods that would grow quickly. We have done that in other areas.
Q. Certainly health and safety is first, correct?

MR. MICHAEL: Vince, I have one small theory that \(I\) want to clarify.

MR. RESTAURI: Okay.
(DISCUSSION HELD OFF THE RECORD)
MR. MICHAEL: There is a new water quality basin here that is not the retention pond; is that correct?

MR. PHILLIPS: That's correct.
MR. MICHAEL: Now let's say that we had an 85 year rain and it would go into that retention pond.

MR. PHILLIPS: Right. Water quality. It's six inches deep, ponds about six inches of water in grass and has plants that will grow in water and absorb.

MR. MICHAEL: What would happen if we had another 85 year storm the next day? Would this water stay here or would it follow the slope and go down?

MR. PHILLIPS: No, in the middle of this will be a catch basin. So once the water gets more than six inches, it goes into the catch basin and will go to the pond. So any water up to a hundred year storm will be contained within that area.

MR. MICHAEL: I guess that's my point, up to a hundred year storm. But if we had two storms that were 90 year storms, one day after the next, would that overwhelm the ability of this basin to contain it and cause it to spill out?

MR. PHILLIPS: It shouldn't because we developed the capacity of the hundred year storm so the next time the storm comes it should have drained down into here.

MR. MICHAEL: It should have.
MR. PHILLIPS: That's correct.
MR. MICHAEL: Doesn't mean that it will.

MR. PHILLIPS: Mother nature can throw a curve ball.

MR. MICHAEL: Mother nature strikes again.

MR. PHILLIPS: Yes.

MR. MICHAEL: So if that occurred, that water would go down the slope here and affect this property down here; is that right?

MR. PHILLIPS: Yes, yours and your neighbor's.

MR. MICHAEL: The people I
represent.
MR. PHILLIPS: Yes.
MR. MICHAEL: Okay, that's it. Thank you.

MR. SOSTER: Ladies and gentlemen, we will meet again for a nine o'clock till noon session on Monday, September 13th, and if needed, we will meet on Friday, September 17th, for an all day session. Is there any objection to excusing these two gentlemen so that they can go about their lives and not return on the 13th?

MR. DePAUL: No objection.
MR. MICHAEL: No objection.
MR. RESTAURI: Thank you both very
much. The board appreciates your testimony and your help.
(DISCUSSION HELD OFF THE RECORD)
MR. RESTAURI: We are done on the
\[
\underline{C} \underline{E} \underline{\mathrm{R}} \underline{\mathrm{I}} \underline{\mathrm{~F}} \underline{\mathrm{C}} \underline{\mathrm{~A}} \mathrm{~T} \underline{E}
\]

I hereby certify that the transcript of the proceedings and evidence contained herein are a true and accurate transcription of my stenographic notes taken by me at the time and place of the within cause; that the transcription was reduced to printing by me; and that this is a true and correct transcription of the same.

> Leaette Cavaliere 162 Cobblestone Drive Pittsburgh, PA (412) 8475237 \((4256\)
\begin{tabular}{c}
\(\boldsymbol{\$}\) \\
\hline \begin{tabular}{c}
\(\$ 10,000[2]-102: 7\) \\
\(260: 12\) \\
\(\$ 75,000[1]-61: 10\) \\
\hline 1
\end{tabular} \\
\hline 1
\end{tabular}
\(1[3]-4: 4,5: 6,43: 21\) 1.0 [4]-78:15, 78:16, 175:19, 185:10
1.1 [1] - 168:13
1.2 [2] - 168:12, 187:8
1.25 [1] - 104:24
1.3 [2] - 106:11, 187:8
1.5 [19]-104:24,

105:11, 106:9,
106:12, 106:23, 107:3, 107:5, 107:10, 107:16, 107:20, 109:13, 115:23, 177:19, 185:8, 185:12, 186:13, 187:8, 187:25
10 [6] - 104:15, 111:13, 156:25, 232:19, 232:22, 267:3
104-105 [1] - 4:8
106 [1] - 164:17
106-121 [1] - 4:16
108 [2] - 158:2, 159:16
11 [4]-5:2, 7:14,
63:22, 248:7
11.5 [2]-5:3, 7:14

12 [8]-5:4, 7:15, 13:8, 172:12, 172:19, 172:20, 197:9
12-19 [1] - 4:5
120 [1] - 224:11
121-146 [1] - 4:8
127 [1] - 63:13
128 [2] - 63:14, 63:16
12:30 [1] - 103:21
13th [2]-276:13, 276:18
14 [2] - 59:20, 204:22
147-163 [1] - 4:9
15 [11]-33:7, 59:20, 59:23, 63:21, 104:15, 111:14, 156:25, 232:19, 232:22, 267:3, 269:6
15003-1248 [1] - 1:4 15143-8762 [1] - 2:16 15219 [2] - 2:20, 3:12 15220 [1] - 3:17 15222-2613 [1] - 3:7 15237 [2]-1:24,
\begin{tabular}{|c|}
\hline 278:16 \\
\hline 16066 [1]-2:11 \\
\hline 162 [2] - 1:24, 278:15 \\
\hline 164-171 [1] - 4:9 \\
\hline 165 [1] - 204:2 \\
\hline 170 [1] - 204:2 \\
\hline 173-174 [1] - 4:10 \\
\hline 175-183 [1] - 4:16 \\
\hline 18[1] - 225:24 \\
\hline 1806 [1]-2:11 \\
\hline 183-206 [1] - 4:10 \\
\hline \[
\begin{aligned}
& 1918[2]-170: 8, \\
& 170: 18
\end{aligned}
\] \\
\hline 1930's [1] - 170:15 \\
\hline 194 [1] - 1:3 \\
\hline 1968 [1] - 164:16 \\
\hline \[
\begin{gathered}
1972[3]-164: 16 \\
164: 20,196: 11
\end{gathered}
\] \\
\hline 19th [1] - 60:18 \\
\hline 1:30 [2] - 147:2, 147:3 \\
\hline
\end{tabular}
\begin{tabular}{c}
\hline 2 \\
\hline \(2[3]-4: 14,104: 24\), \\
\(225: 9\) \\
\(2.5[1]-107: 4\) \\
\(20[13]-1: 6,33: 5\), \\
\(33: 6,103: 19\), \\
\(194: 10,195: 2\),
\end{tabular}

198
239:25, 247:5,
247:6, 247:12, 269:6
20-46 [1] - 4:5
200 [5] - 3:16, 195:24,
195:25, 196:7,
203:20
2004 [3] - 48:20, 49:7, 49:8
2006 [1] - 60:18
2007[1]-61:8
2008 [1] - 44:1
2013[1]-204:8
2017[1]-99:20
2019 [1] - 190:14
2021 [2] - 1:6, 20:22
206-211 [1] - 4:17
21 [5] - 102:14,
160:20, 160:22,
196:17, 197:2
210[1]-3:6
2100[1]-2:15
22,000 [1] - 61:3
220,000 [1] - 203:21
226-230 [1] - 4:11
23 [3]-102:14,
196:17, 197:2
231-249 [1] - 4:11
232,000 [1] - 203:22
24 [1] - 269:3
240 [1] - 2:10
\begin{tabular}{c}
\(\mathbf{2 4 9 - 2 6 1}[1]-4: 12\) \\
\(\mathbf{2 5}[8]-198: 13\), \\
\(198: 15,198: 18\), \\
\(203: 14,237: 10\), \\
\(237: 16,238: 14\) \\
\(250,000[1]-111: 24\) \\
\(\mathbf{2 6 6 - 2 7 4}[1]-4: 12\) \\
\(\mathbf{2 7}[1]-197: 8\) \\
\(\mathbf{2 8}[1]-206: 9\) \\
\(\mathbf{2 : 5 2}[1]-205: 24\) \\
\hline \multicolumn{1}{c}{3} \\
\hline
\end{tabular}
3 [1] \(-43: 14\)
\(30[10]-12: 22,13: 4\),
150:14, 193:23,
194:10, 195:2,
231:24, 232:2,
232:17, 247:15
300 [2]-2:15, 268:8
\(31[1]-212: 15\)
\(33[1]-238: 20\)
35 [1] - 123:4
37 [1] - 23:3
375,000 [1] - 241:22
3:10 [1] - 205:24

50 [19] - 14:6, 37:11, 102:13, 107:18, 109:16, 160:22,
190:7, 190:22,
197:3, 199:25,
202:24, 203:6,
238:19, 247:19,
251:12, 251:15,
263:4, 263:6, 263:14
500 [8] - 63:8, 63:9,
146:1, 146:6, 146:8,
\begin{tabular}{c}
163:22, 196:13, \\
196:15 \\
\(\mathbf{5 0 0 , 0 0 0}[1]-60: 21\) \\
\(503[1]-2: 20\) \\
\hline
\end{tabular}
\begin{tabular}{c}
\hline 6 \\
\hline \(6[4]-5: 2,5: 3,5: 4\), \\
\(204: 8\) \\
\(60[4]-142: 24\), \\
\(264: 24,265: 1,265: 8\) \\
\(60-63[1]-4: 6\) \\
\(600[3]-3: 11,63: 8\), \\
\(63: 10\) \\
\(600,000[1]-60: 21\) \\
\(625[2]-203: 11\), \\
\(204: 11\) \\
\(64-76[1]-4: 6\) \\
\(65[1]-233: 1\)
\end{tabular}
\begin{tabular}{c}
\hline 7 \\
\hline \(7-8-21[1]-2: 19\) \\
\(70[8]-32: 18,32: 22\), \\
\(55: 3,55: 8,65: 10\), \\
\(65: 13,65: 15,266: 7\) \\
\(737[1]-253: 10\) \\
\(741[1]-204: 18\) \\
\(744[1]-204: 18\) \\
75 [9]-21:7, 21:13, \\
\(21: 17,21: 20,22: 15\), \\
\(22: 18,110: 13\), \\
\(268: 20\) \\
\(76-77[1]-4: 7\) \\
\(77-85[1]-4: 15\) \\
7 th [1] - 20:22 \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline \multicolumn{1}{c}{8} \\
\hline \(8-20-2021[1]-43: 21\) \\
\(80,000[1]-211: 8\) \\
\(85[2]-274: 16,274: 23\) \\
\(85-103[1]-4: 7\) \\
\(88[1]-203: 2\) \\
\hline
\end{tabular}
\begin{tabular}{c}
\hline \(\mathbf{9}\) \\
\hline \(90[5]-142: 25\), \\
\(195: 23,214: 10\), \\
\(267: 18,275: 9\) \\
\(98[1]-267: 14\) \\
\(99.4[1]-267: 15\) \\
\(99.9[1]-145: 22\) \\
\(9: 00[1]-1: 7\) \\
\hline
\end{tabular}
\begin{tabular}{l}
\hline \multicolumn{1}{c}{\(\mathbf{A}\)} \\
\hline a.m \([1]-1: 7\) \\
\(\mathbf{A A}_{[1]}-153: 11\) \\
AAA \(_{[7]}-148: 17\),
\end{tabular}

155:1, 158:9,
159:23, 164:8,
201:3, 201:7
abide [1] - 90:8
ability [3]-150:22,
228:21, 275:11
able [15] - 14:5, 17:16,
44:22, 116:22,
130:17, 157:16,
169:6, 186:16,
193:19, 211:14, 221:15, 222:3, 232:23, 235:14, 244:21
absorb [1] - 274:21
absorbed [1] - 73:21
abut [1] - 19:11
abutting [1] - 19:1
accelerates [1] - 253:7
accelerating [1] 253:9
accept \([3]-33: 18\), 40:21, 130:11
acceptable [4] -
104:13, 104:23, 105:11, 243:8
accepted [1] - 9:18
access [14] - 17:25,
18:2, 19:3, 23:6, 35:7, 35:23, 80:15, 157:17, 189:11, 189:21, 214:25, 215:9, 216:13, 237:24
accesses [1] - 34:7
accident [2] - 88:21, 88:22
accommodate [5] -
118:20, 269:18, 269:23, 271:22, 272:21
accomplish [1] -
261:8
accordance [5]-56:1,
115:16, 115:17, 137:11, 181:8
according [2] - 37:25, 213:24
account [11] - 52:11,
62:5, 75:16, 75:21, 84:22, \(90: 14\),
106:16, 107:24, 130:22, 141:22, 143:20
accurate [4] - 263:18, 264:9, 264:16, 278:7 accurately [2] - 77:7, 78:25
achieve [3]-203:2, 263:4, 263:6
achieved \({ }_{[1]}\) - 188:1 acre [3]-158:2, 159:16, 205:8 acreage [2]-263:7, 264:1
acres [23]-14:6, 37:11, 102:13, 133:23, 160:22, 190:8, 190:22, 197:4, 199:4, 238:22, 238:25, 239:23, 239:25, 240:1, 247:5, 247:6, 247:12, 247:18, 251:12, 251:16, 263:4, 263:6, 263:14
Acres [3]-157:23,
184:11, 248:10
ACS [2]-108:10, 108:20
act \({ }_{[1]}-75: 20\)
action [2]-16:17, 101:7
active [3]-80:8, 176:4 activities [1] - 91:15 activity [6] - 16:4, 26:9, 101:6, 232:8, 245:21, 271:22 acts [1]-112:12 actual [3]-34:1, 39:3, 126:9
actuality \({ }_{[1]}\) - 252:19
add [8]-57:17, 83:13, 84:8, 116:5, 116:10, 132:2, 132:21, 228:25
added [1] - 157:9
addendum [1] -
202:19
adding [8] - 82:1, 84:4, 84:10, 110:18, 113:14, 113:16, 116:14, 199:10 addition [6]-32:21, 55:12, 129:17, 131:18, 146:17, 203:13
additional [21] 31:21, 32:3, 32:9, 32:11, 33:10, 33:20, 33:21, 33:22, 36:7, 36:15, 37:14, 57:4, 57:22, 57:24, 60:7, 65:20, 157:11, 158:23, 177:25, 180:21, 205:12
address [6] - 53:13, 82:1, 83:21, 177:23, 186:23, 195:19
addressed [6]-17:1,

17:3, 131:22,
139:15, 166:9,
177:14
addressing [2] 81:22, 211:1
adds [2]-101:7, 126:23
adequate [5]-23:22,
114:4, 132:20,
139:12, 179:19
adequately [1] - 114:1
adhered \({ }_{[1]}\) - 93:16
adjacent [6]-19:13,
60:24, 212:11,
213:11, 219:9,
219:14
adjustment \({ }_{[1]}\) - 180:2
adjustments [1]-83:8
administer \({ }_{[1]}-6: 18\)
administration [3] -
159:21, 190:20,
262:17
advance [2]-8:9,
137:20
adverse \({ }_{[1]}\) - 90:15
adversely \({ }_{[1]}\) - 79:25
advice [2]-94:5, 205:15
advisable [1] - 216:15
advise \({ }_{[1]}-171: 18\)
advised [1]-247:9
advisory [1]-43:25
aesthetic [1]-272:6
affairs [1] - 149:14
affect [17] - 38:20,
38:24, 38:25, 39:4,
57:18, 79:25, 82:15,
83:3, 84:24, 119:10,
120:3, 208:6,
208:10, 208:11,
209:23, 240:19, 276:3
affected [7]-40:4,
61:2, 178:25,
207:14, 208:3,
221:13, 240:7
afford \({ }_{[1]}\) - 167:13
afternoon [1] - 20:4
afterwards [2]-26:16,
209:18
age \({ }_{[1]}-267: 10\)
agencies [2]-97:23, 230:9
agency [1]-128:17
Agnes [2]-164:20, 269:9
ago [11]-49:1, 58:11, 59:20, 59:23, 60:1, 60:2, 69:21, 72:14, 104:15, 168:18,

253:6
agree [25]-21:14,
30:19, 34:13, 35:14, 35:18, 36:1, 38:18, 39:17, 40:1, 48:3, 61:17, 61:21, 62:22, 66:10, 67:11, 68:3, 69:15, 70:8, 71:21, 75:5, 123:6, 123:7, 125:4, 128:2, 198:4
agreed \([1]-230: 3\)
agreement [3]-8:10, 8:25, 157:16 ahead [5]-40:23, 175:1, 236:12, 236:13, 236:25
aircraft \({ }_{[1]}\) - 153:21
Aleppo [2]-248:11, 248:12
alert [1] - 42:20
aligned [1]-21:8
allay \({ }_{[1]}\) - \(255: 3\)
Allegheny [12] -
60:21, 68:21, 68:25, 69:14, 90:7, 95:2, 97:17, 142:6, 142:8, 205:3, 205:4, 205:9
allegiance \({ }_{[1]}\) - 6:6
Allegiance \({ }_{[1]}-6: 7\)
alleviate [1]-259:2
allocated [1] - 224:13
allow [7]-37:24,
118:20, 122:20,
154:4, 155:1,
157:17, 206:14
allowable [1] - 225:16
allowed \([10]\) - 153:2,
156:9, 167:14,
194:18, 194:19,
198:10, 201:12,
211:20, 219:13, 255:6
allowing [2] - 194:15, 215:7
allows [3] - 141:3, 153:12, 256:12
almost [6] - 32:20,
108:18, 110:6,
112:12, 118:22,
203:14
alone [1]-272:25
alongside [1]-210:20
alternate [1]-2:6
alternative [3] -
157:12, 273:6,
273:20
amazing [1] - 168:11
Ambridge [1]-1:3
amenities [8]-14:11,
31:25, 158:7,

159:22, 191:7,
191:9, 191:11,
200:17
amount [33]-25:14,
28:11, 31:18, 32:3,
32:21, 83:10, 103:1,
103:11, 122:19,
136:19, 140:5,
141:24, 148:5,
148:10, 151:2,
167:11, 193:19,
194:3, 194:16,
194:25, 225:25,
236:16, 239:19,
242:5, 252:1,
262:22, 264:1,
268:1, 268:6,
268:19, 268:24,
269:5
amounts [2] - 184:8, 195:18
analyses [8]-54:20,
107:1, 109:6,
109:10, 109:17,
144:14, 187:7,
214:16
analysis [37]-32:4, 49:13, 50:19, 55:11, 56:9, 57:13, 57:15, 57:16, 104:24, 107:15, 107:24, 108:5, 109:4,
114:10, 126:8,
136:4, 136:6,
138:24, 148:14,
150:24, 152:24,
175:16, 181:15,
200:4, 207:24,
208:23, 209:9,
219:7, 225:9,
225:13, 233:15,
235:24, 256:12,
256:13
analyze [12]-53:11,
59:8, 62:11, 83:17,
84:7, 115:17,
115:18, 137:20,
143:8, 194:2,
233:20, 256:10
analyzed [4]-49:16,
83:15, 235:22, 235:23
analyzes [1]-50:14
analyzing [2] - 58:9, 59:3
anchored [1] - 16:16
ancillary [2]-134:22,
190:19
anecdotal \({ }_{[1]}\) - 271:7
answer [25]-7:7,

29:24, 75:1, 77:16,
105:18, 147:15,
148:15, 148:22,
150:8, 150:22,
154:17, 159:6,
169:4, 171:17,
174:2, 182:9,
182:11, 192:25,
201:10, 241:25,
251:11, 252:12,
257:16, 257:24,
271:8
answered [1] - 259:5
answers [1] - 105:24
Anthony [1] - 193:7
anticipate [5]-30:21,
31:21, 235:10,
239:1, 241:21
anticipation [6] -
23:17, 44:6, 45:11,
48:7, 59:2, 59:8
anyway [5] - 197:9,
214:19, 236:12,
236:13, 254:2
apex [1]-56:14
apologies [1]-57:25
apologize [1]-20:8
appealed \([1]\) - 154:17
appear [2]-132:18,
132:20
APPEARANCES \({ }_{[1]}\) 3:1 appendices \({ }_{[1]}\) 63:16
appendix [2] - \(60: 17\), 63:15
applicable [1] - 11:12
APPLICATION \({ }_{[1]}\) -
1:11
application [4]-6:9, 174:6, 183:14,
202:19
applying [1] - 172:8
appreciate [9]-10:4,
20:13, 44:25, 47:10, 76:21, 80:20, 175:9,
261:2, 273:19
appreciated \({ }_{[1]}\) -
146:22
appreciates [1] 276:22
approach [2]-18:4, 156:6
approached [1] -
157:15
appropriate [3]-10:1, 51:5, 224:14
approve \({ }_{[1]}-230: 5\)
approved \({ }_{[1]}-188: 18\)
arbitrarily [1] - 154:25
architect [15] - 10:20, 36:20, 36:21, 37:1, 85:11, 167:25, 191:3, 192:8, 193:15, 203:19, 234:8, 247:8, 247:9, 248:2, 259:19 architects [1] - 36:25 area [82]-9:17, 16:7, 26:7, 26:19, 27:3, 28:10, 39:14, 44:9, 48:23, 56:23, 56:24, 71:9, 73:25, 77:9, 81:3, 83:24, 86:8, 86:21, 90:17, 95:7, 95:24, 99:24, 118:25, 120:22, 120:24, 122:10, 122:13, 132:11, 134:9, 134:14, 135:17, 147:21, 160:23, 161:22, 166:24, 166:25, 169:19, 169:20, 175:22, 176:16, 189:18, 191:16, 197:19, 198:3, 200:15, 201:3, 203:24, 207:10, 211:25, 212:3, 212:6, 213:12, 214:15, 214:19, 216:12, 219:9, 219:10, 219:16, 230:1, 231:17, 231:22, 234:6, 235:3, 237:13, 237:17, 237:19, 240:8, 245:17, 249:10, 263:6, 264:3, 264:7, 268:23, 270:14, 271:5, 271:16, 273:3, 273:9, 273:10, 273:12, 273:13, 275:6
areas [36]-15:4, 56:8, 57:6, 69:8, 69:12, 69:17, 82:17, 106:14, 118:23, 120:21, 134:5, 134:7, 141:3, 141:11, 176:2, 176:3, 176:18, 177:3, 178:4, 197:20, 197:22, 198:18, 201:14, 202:1, 203:1, 207:8, 211:24, 235:4, 239:20, 240:5, 245:11, 246:21,

266:4, 269:10, 274:5 argue [1]-12:1
arise [2]-62:3, 127:14
Army [3] - 162:19, 163:10, 163:18
art [1] - 145:3
arteries [1] - 96:21
artery \({ }_{[1]}\) - \(215: 2\)
aspect \([4]-25: 10\), 52:14, 59:18, 129:11
aspects [10]-13:25, 14:1, 48:11, 52:6, 56:4, 56:13, 108:25, 166:2, 209:13, 223:5
assess [1] - 101:21
assessments [1] 175:15
assist [1] - 210:25
assistants [1] - 142:9
assisted [1] - 9:23
associated [2] 11:17, 217:10
assume \([3]-7: 20\), 137:14, 207:5
assuming [3]-120:9, 125:15, 272:23 assumptions [2] 144:14, 144:17 assurance [1] 121:12
assure [2]-162:23, 258:5
attached [1] - 118:7
attempting [1] 182:23
attention [1] - 76:2
attorney [2]-20:14, 130:8
attorneys [1] - 167:12
audience [2] - 174:5, 206:3
August \({ }_{[1]}-1: 6\) authentication [1] 43:9
authored [1] - 45:4
authorities [1] - 230:9
authority [1]-227:23
automatically [1] 156:9
available [9] - 7:7, 9:24, 10:3, 91:6, 94:9, 144:24, 144:25, 200:13, 222:2
Avenue [2]-1:3, 3:6
average \([7]-175: 24\), 176:1, 176:8, 177:15, 177:20,
185:5, 185:10
avoid [1]-240:5
aware [37]-22:12, 25:11, 25:21, 30:9, 44:3, 44:8, 44:9, 45:4, 45:7, 45:8, 48:21, 48:23, 53:12, 57:9, 68:21, 69:5, 69:12, 71:9, 80:7, 80:10, 80:13, 89:17, 95:12, 98:24, 100:13, 124:4, 138:5, 165:8, 172:8, 172:23, 188:25, 204:6, 205:17, 212:17, 227:25, 258:25, 262:7
awareness [1] 206:24
\begin{tabular}{c}
\hline \(\mathbf{B}\) \\
\hline background \([1]-9: 22^{\text {backing }_{[4]}-163: 21,}\) \\
225:1, 225:2, 225:4 \\
backup \(_{[1]}-224: 23\) \\
backyard \(_{[3]}-71: 3\), \\
\(71: 5\) \\
bad \(^{110]}-131: 6\), \\
171:14, 171:15, \\
196:24, 214:2, \\
\(223: 12,240: 23\), \\
\(243: 11,269: 7\)
\end{tabular}

Baden [1] - 165:21
bag [1] - 65:4
balance [2] - 242:2, 242:3
balanced [1] - 242:14
ball [8] - 30:24, 31:15,
65:2, 145:10, 163:17, 163:23,
212:21, 275:22
ballpark [2]-102:10, 196:23
balls [1] - 74:19
bareback [1] - 182:20
base [2]-15:24, 135:11
based [15] - 26:18, 57:12, 107:24, 132:19, 157:2, 176:9, 181:13, 206:15, 209:24, 209:25, 225:18, 236:4, 242:4, 268:19, 271:6
baseline [1]-115:4
basement \({ }_{[1]}\) - 66:25
basements [1]-66:25
bases [1]-132:17
basin [6] - 173:9,
173:25, 274:12,

275:2, 275:4, 275:11
basis [1] - 98:4
bathtub [1] - 218:25
bearing [1] - 56:1
beautiful \({ }_{[1]}-168: 17\)
Beaver [11]-121:3,
142:18, 162:12, 163:9, 163:11, 194:14, 203:11,
203:15, 204:11,
217:23, 229:20
become [4]-79:12,
91:24, 133:5, 170:14
becomes [2]-112:24, 130:6
bed [32]-21:10, 45:17, 50:2, 50:4, 50:6, 50:10, 53:15, 81:10, 110:10, 111:10, 132:10, 135:12, 149:12, 160:5, 218:18, 243:18, 243:19, 243:21, 244:7, 244:8, 244:14, 244:15, 244:19, 244:20, 244:22, 245:1, 245:9, 245:13, 245:15, 249:4
bedrock [27] - 79:22,
81:11, 111:18, 118:5, 119:8, 119:10, 119:17, 119:22, 120:1, 120:6, 120:7, 121:20, 121:22, 122:18, 136:15, 148:20, 173:16, 204:17, 204:19, 232:9, 244:1, 244:4, 244:5, 244:7,
244:24, 245:3, 245:8
beds [19]-14:13,
14:23, 15:13, 15:22,
50:24, 51:10, 62:8,
110:9, 132:14, 156:19, 156:21, 161:19, 204:9, 204:11, 243:20, 243:25, 244:2, 245:24, 246:9
begin [7]-78:20, 78:21, 110:16, 111:17, 187:12, 187:18, 187:23
beginning [2] - 36:24, 230:12
begins [1]-31:3
BEHALF [6] - 2:9,

2:13, 2:17, 3:4, 3:9, 3:15
behalf \([6]-10: 6\), 12:20, 131:19, 139:8, 166:2, 205:10
behind \({ }_{[2]}\) - 137:9,
273:22
behoove [1] - 131:23
Beitko [5]-13:9,
44:11, 46:21, 48:1,
130:25
Bell [3] - 157:22, 184:11, 248:10
below [32] - 32:25,
33:2, 35:7, 65:8,
65:12, 66:20, 67:9, 70:12, 70:15, 72:2,
72:3, 72:5, 73:4,
75:20, 122:7,
141:11, 162:12,
176:7, 178:11,
184:19, 185:10,
194:6, 202:25,
204:12, 209:10,
221:5, 229:11,
240:15, 246:19,
248:11, 248:14,
257:11
belt [1] - 116:17
bench [2] - 113:7, 240:2
benches [2] - 113:6, 250:15
benching [6] - 112:20,
249:22, 249:23,
250:20, 251:9,
272:24
benefit [1] - 148:13
benefits \({ }_{[1]}\) - 178:6
berm [1] - 274:1
best [12]-74:13,
81:24, 85:4, 94:14,
123:3, 128:21,
144:25, 150:22,
182:12, 184:4,
213:16, 236:20
better [11]-44:15,
97:23, 101:21,
125:3, 160:18,
160:19, 161:10,
161:11, 185:8,
211:2, 218:7
between [11]-37:6,
60:21, 89:3, 133:15,
190:12, 204:17,
204:19, 213:12,
229:16, 270:10,
271:17
beyond [10]-91:1,
104:10, 113:9,

168:5, 182:14,
187:1, 196:1,
209:19, 257:10
bid [3]-92:15, 129:23, 130:4
bidding \({ }_{[1]}\) - 129:13
bids [1] - 130:10
Big [1] - 96:19
big [9]-24:21, 29:1, 29:2, 65:25, 71:10, 151:6, 164:11, 165:6, 171:8
bigger [5]-194:10, 194:11, 260:6, 263:19, 263:22
biggest [3] - 127:8, 142:20, 245:9
billion [1]-72:14
bio [1]-141:1
bishop [1] - 126:20 bit [12] - 17:24, 54:7,
84:10, 88:17, 173:8, 176:2, 176:6, 177:5, 209:19, 209:22, 214:18, 255:25
blanket [1]-150:19
blankets [2] - 171:3, 171:5
blast [9]-26:13, 65:23, 138:7, 140:7, 179:15, 207:14, 232:22, 233:11, 233:24
blasted [1]-24:17 blasting [65] - 25:3, 25:14, 25:18, 25:22, 25:25, 26:23, 26:25, 27:7, 27:12, 27:15, 31:18, 33:21, 39:13, 39:23, 40:3, 40:9, 40:20, 40:24, 41:1, 41:10, 41:19, 42:1, 42:6, 64:16, 82:15, 82:21, 83:4, 83:11, 92:7, 93:9, 98:19, 99:16, 99:21, 100:8, 101:1, 135:19, 135:20, 136:2, 136:7, 136:9, 136:10, 137:13, 140:4, 146:15, 171:2, 179:14, 179:17, 196:21, 196:23, 204:25, 207:4, 207:20, 207:22, 209:1, 232:10, 232:13, 233:4, 234:22, 235:1, 235:8, 235:16, 235:22,

250:23, 260:19
blocks [1] - 164:6
blow [1] - 171:7
blowing [2] - 137:8, 140:4
board \([37]-6: 5,8: 3\), 13:8, 13:11, 16:7, 21:25, 31:10, 31:16,
33:17, 34:5, 36:19, 37:6, 37:23, 38:2, 43:3, 45:13, 46:10, 89:20, 124:9, 128:8, 131:4, 132:1, 147:12, 188:6, 188:11, 190:6, 190:16, 191:10, 191:24, 193:6, 206:24, 218:3, 220:4, 223:23, 262:2, 270:23, 276:22
Board [3] - 162:22,
162:24, 222:19
BOARD [3]-1:2, 2:4, 2:9
Boehm [1]-2:14
Boeing [1] - 253:10
bond [1] - 112:18
bonding [1]-260:2
bonds [1] - 224:13
boom [2] - 171:8
bordered [2]-150:1, 157:20
borderline [2]-16:23, 77:11
boring [5]-22:1, 22:2, 55:5, 64:19, 244:17
borings [66] - 21:7, 21:13, 21:18, 21:20, 22:19, 22:22, 23:7, 23:10, 23:11, 23:15, 23:23, 28:7, 31:22, 32:2, 32:9, 32:11, 32:18, 32:21, 33:9, 33:11, 33:21, 36:8, 36:16, 37:15, 53:25, 54:5, 54:7, 54:8, 54:11, 54:15, 54:16, 55:5, 55:14, 55:15, 55:21, 55:23, 56:3, 56:7, 56:17, 56:19, 57:4, 64:11, 64:13, 64:21, 71:21, 80:25, 83:18, 99:6, 99:10, 99:12, 110:4, 126:7, 127:15, 127:18, 127:21, 131:9, 148:10, 149:9, 160:9, 188:23, 197:1, 204:16,

244:15, 248:16, 248:18
BOROUGH [1] - 2:17
Borough [9]-69:6, 80:1, 80:17, 93:2, 94:24, 97:14, 131:14, 141:25, 183:20
bottom [3]-112:11, 170:12, 172:13 bought \([2]-218: 8\), 253:5
boulevard [1] - 254:1
Boulevard [3]-2:20, 60:24, 61:3
bound [1]-185:15
BOWARD [63] - 4:14,
47:16, 77:19, 77:21, 105:20, 106:2, 123:7, 125:7, 126:17, 127:16, 129:21, 130:6, 131:11, 132:10, 133:20, 134:25, 136:2, 137:18, 138:4, 138:23, 139:6, 140:10, 148:23, 150:8, 159:11, 159:25, 165:24, 166:6, 167:18, 168:5, 169:10, 170:13, 171:18, 173:18, 175:3, 186:25, 200:2, 200:11, 200:22, 201:9, 233:14, 235:12, 239:7, 240:9, 240:16, 240:25, 241:6, 242:17, 243:20, 244:17, 245:7, 245:14, 254:20, 254:25, 255:11, 256:7, 257:23, 262:24, 263:21, 264:11, 264:15, 265:21, 266:1
Boward [15]-5:3, 7:15, 9:22, 10:16, 13:9, 13:12, 14:15, 44:11, 44:17, 46:21, 47:24, 48:1, 105:18, 183:21, 206:6
Boward's [1] - 7:13
boward's [1] - 262:9
box [1] - \(84: 15\)
Box [1] - 2:11
boxes [1] - 185:18
brand [2]-192:16,

192:17
break [9]-63:21, 96:5, 96:8, 103:20,
103:25, 113:2,
146:23, 174:22,
205:24
breaking [2] - 72:24, 136:25
bridge [1] - 196:5
brief [1] - 14:15
briefly [1] - 46:9
bring \([7]-29: 3,29: 7\),
50:25, 75:14,
166:22, 218:2, 253:21
bringing [4]-52:3, 52:13, 177:19, 217:23
brittle [2]-65:17, 65:18
broad [4] - 34:16,
153:19, 156:2, 160:1
broke [1]-64:25
broken [2]-137:4, 138:17
broker [1] - 190:17
brother [1]-198:5
brought [4] - 128:6,
195:7, 211:10, 211:11
buckets [1] - 65:25
budget \([8]-95: 19\),
100:23, 102:6,
223:11, 224:10, 224:12, 228:4, 236:7
buff [1] - 273:25
buffer [2] - 85:10, 274:1
bugging [1] - 264:20
build [41]-10:23,
14:4, 15:12, 15:14,
15:19, 16:3, 16:12,
16:18, 22:21, 23:22,
35:14, 37:24, 39:5,
39:7, 67:10, 102:23,
108:15, 112:10,
119:15, 134:21,
135:8, 135:11,
148:17, 149:15,
155:8, 155:9,
171:16, 190:17,
191:21, 199:18,
219:25, 225:14,
230:5, 230:17,
257:1, 261:16,
262:13, 271:12,
273:3, 273:13,
273:16
buildable [5] - 14:6,
134:14, 160:23,

161:22, 236:17
building [34]-10:14, 10:19, 10:20, 10:22, 11:2, 29:16, 33:14, 35:23, 36:4, 55:19, 55:21, 56:22, 57:7, 105:13, 108:15, 113:10, 120:3, 122:16, 128:16, 164:14, 166:24, 173:21, 200:18, 202:25, 204:1, 214:3, 220:20 223:6, 226:17, 231:22, 237:16, 237:23, 261:1, 273:17
buildings [7] - 35:24, 37:4, 149:4, 156:22, 158:3, 159:18, 262:14
builds [1]-230:4
built [26]-40:15, 87:22, 102:20, 118:20, 118:24, 120:5, 120:20, 120:21, 134:23, 141:8, 151:10, 155:2, 164:16, 165:2, 165:22, 170:10, 192:11, 215:15, 217:13, 217:14, 217:18, 219:19, 226:5, 252:19, 270:25
bulk [3] - 102:13, 102:21, 197:3 bunch [8] - 70:25, 150:5, 188:21, 190:11, 205:15, 250:11, 250:12, 251:1
burden [3]-11:11, 260:13, 260:16
Burkhardt [1] - 2:19 burst [5] - 122:5,
195:12, 195:17, 195:22, 253:19
bursts [1] - 195:19
bus [1]-190:21
buses [5] - 215:9,
217:8, 217:23,
218:2, 221:15
business [1] - 241:10
buttress [1]-212:8
buttressing \([3]\) -
210:7, 213:4, 220:12
buy [7]-108:14,
162:17, 188:12,
221:24, 237:8
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
buyer [1] - 253:18 \\
buying [1] - 219:14
\end{tabular} & \[
\begin{aligned}
& \text { 62:3, 106:20, } \\
& \text { 162:15, 219:7 }
\end{aligned}
\] & \[
\begin{aligned}
& 52: 20 \\
& \text { caught }[1]-120: 22
\end{aligned}
\] & \[
\begin{gathered}
\text { 136:9, 139:1 } \\
\text { charges [3] - 136:17, }
\end{gathered}
\] & \[
\begin{aligned}
& 70: 16,70: 19,71: 2, \\
& 72: 7,244: 3,244: 19
\end{aligned}
\] \\
\hline BY [42] - 12:14, 13:6, & cap [6]-70:12, 72:2 & caused [4] - 40:9, & 136:18, 140:14 & cleaned [1]-227:9 \\
\hline \[
\begin{aligned}
& 20: 3,44: 2,44: 24, \\
& 47 \cdot 21,60: 14,64: 6
\end{aligned}
\] & \[
\begin{aligned}
& \text { 119:13, 143:23 } \\
& 173: 6,188: 20
\end{aligned}
\] & \[
63: 6,138: 3,242: 19
\] & Charlie [1] - 193:14 cheap [3]-103:4 & \[
\begin{array}{r}
\text { clear }[9]-10: 15,11: 8, \\
11: 25,29: 23,41: 18,
\end{array}
\] \\
\hline 76:14, 78:1, 85:24, & capacity [9]-142:23, & 73.21 & 103:8, 103:9 & 1:13, 230:25, \\
\hline 104:7, 106:7, & 173:24, 193:18, & causing [4]-78:14, & check [2]-227: & 252:8, 257:14 \\
\hline 121:11, 147:11 & 194:14 & 25, 163:12 & 260:11 & clearcut [2]-247:6 \\
\hline 150:21, 154:22, & 196:2, 211:10 & 210:21 & checking [1] - 131 & 247: \\
\hline 156:5, 160:14, & 253:20, 275:14 & CAVALIERE \({ }_{[1]}-1: 23\) & cheers [1]-221:5 & clearer [1] - 124:23 \\
\hline 164:4, 166:11 & capita [1]-53:3 & Cavaliere [5] - 1:23, & chicken [1]-124:11 & clearly [1] - 154:12 \\
\hline 168:6, 171:1, 173:5, & capped [2]-21:8 & 7, 6:25, 205:23, & children [2]-193:5, & client [2] - 83:22, \\
\hline 173:23, 175:8, & 24:8 & 278:15 & \[
217: 5
\] & 171:23 \\
\hline 182:10, 183:25, & car [2] - 42:5, 209:25 & Center [1]-3:6 & choice & clients [1]-216:19 \\
\hline 188:2, 201:11, & care [21]-52:9, 54:24, & center [2]-155:20 & 71:17 & cliff [1] - 166:16 \\
\hline 202:2, 206:8, & 106:10, 106:16, & 226:5 & chooses [1]-2 & cliffs [1]-72:2 \\
\hline 226:15, 231:6, & 106:19, 106:21 & certain [22]-26:8 & choosing [2]-220:10, & clock [1] - 20:9 \\
\hline 233:23, 236:2, & 106:24, 124:25 & 11, 83:1, 105: & 259:8 & clogging [1] - 142:22 \\
\hline 239:10, 241:16, & 128:21, 181:1, & 109:20, 114:5, & chose [1]-94:16 & close [13]-31:11, \\
\hline 246:23, 249:20, & 181:2, 181:18, & 115:10, 116:8 & chosen [3]-36:18, & 31:17, 33:18, 38:21, \\
\hline 258:16, 266:25 & 182:13, 182:15 & 0:4, 136:9 & 36:19, 93:5 & 9:9, 39:14, 40: \\
\hline C & \[
\begin{aligned}
& \text { 182:22, 183:3, } \\
& 200: 23,241: 8,
\end{aligned}
\] & \[
1: 10,155: 2
\] & Chuck [3]-2:5, & \[
0: 19,41: 2,87: 12,
\] \\
\hline & 251:18, 254:19 & :21, 194:16, & chunk [1] - 195:4 & 216:17 \\
\hline ca & & \[
1: 19,211: 2
\] & cindered [1] - 227 & closed [1] - 277 \\
\hline c & career [1] - 138: & 13, 269:10 & circular \({ }_{[1]}\) - 126:20 & closer [1] - 233:17 \\
\hline caissons [4] - 119:20, & carried [2]-117:6, & certainly [6] - 49:22 & circumstances \({ }_{[1]}\) & sest [1] - 88:7 \\
\hline 20:2, 120:7, 157:1 & 164:12 & 51:6, 53:22, 118:25, & 203:17 & sure [1] - 212:17 \\
\hline calculate [1] - 213:20 & carrier [1] - 182:1 & 178:4, 274:6 & CITIZEN [2] - 3:4, 3 & loud [1] - 253:19 \\
\hline cals & carries [1]-61:3 & certify \({ }^{[1]}\) - 278 : & citizens [2] - 31:10 & uds [1] - 268:5 \\
\hline 163:14, 208:9 & cars [3] - 138:12 & Chairman [2]-2:5 & 33:17 & ump [1] - 113:1 \\
\hline calculation [2] & 215:10, 221:15 & 146:22 & civil [12]-13:1, 47 & lumps [1] - 71:10 \\
\hline & cart [2] - 254:4, 258:17 & & 91:3, 94:1, 94:12, & oal [1]-204:12 \\
\hline & cascaded [1] - 60:22 & chance [8]-119:1 & 1:25, 140:2 & Cobblestone [2] - \\
\hline \[
8: 2,208: 4,210: 5,
\] & case [22] - 27:23, 66:5 81:25, 89:8, 110:22 & 127:2! & 7:17, 152:13, & 24, 278:15 \\
\hline 225:18, 234:25, & 110:25, 111:8, & \begin{tabular}{l}
133:25, 134:1, \\
134:4, 179:12, \(232: 5\)
\end{tabular} & \begin{tabular}{l}
\[
159: 8,160: 16,161: 9
\] \\
claim [2]-130:8,
\end{tabular} & \[
\begin{gathered}
\text { code }[4]-82: 18, \\
82: 19,171: 20,
\end{gathered}
\] \\
\hline 5:16 & 111:9, 111:12, & change [10]-31:7, & \[
\begin{gathered}
\text { clalm } \\
\text { 261] } 2]
\end{gathered}
\] & 171:21 \\
\hline caliber [1] - 62:10 & 116:22, 135:21 & 67:21, 71:25, 72:1 & clarification [1] & codes [2]-82:21, \\
\hline California [1] - 56:1 cameras [1]-260:21 & 0:17, 142:12, & 16, 91:25, & 101:17 & codes [2] - 82.21,
136:8 \\
\hline Camp [33]-18:3, & :24. 196:2 & 5:16, 262:6 & clarified [1] - 270: & ola [1] - 155:19 \\
\hline 19:13, 23:7, 28:5 & \[
25,242: 5
\] & changed [5] - 17 & & rated [1] - 48 \\
\hline 88:13, 95:6, 95:15, & 257:25, 261:1 & 191:9, 262:5, & 274:8 & ollabor
48:12 \\
\hline 96:1, 96:19, 120:16, & cases [2] - 149:6, & 263:15, 264:6 & classifica & colleague \\
\hline 121:4, 141:8, & 150:1 & changes [4]-31:7 & 155:22 & 77:16 \\
\hline 141:17, 141:20, & casing [3] - 118:3 & 115:1, 175:12, 234:2 & \[
\text { classify }[1]-127: 2
\] & collect [4]-67:6, 67:8, \\
\hline 141:21, 142:22, & 118:6, 118:10 & changing [3] - 67:23, & clay [21] - 71:2, 71:7, & 140:24, 269:25 \\
\hline :8, 153:9,
\[
3: 14,165: 13
\] & Cassandra [1] - & \[
82: 13,234: 15
\] & :10, 71:13, 71:1 & ollected \({ }_{[1]}-142: 13\) \\
\hline \[
\begin{aligned}
& 188: 14,165: 13 \\
& 177: 24,189: 14
\end{aligned}
\] & C & channel [3]-165:11, & :22, 72:4, 72:5, & collecting [1] - 143:24 \\
\hline 189:22, 207:11, & Cassie [1] - 192:7 cast [1]-119:18 & character [1]-114:25 & \[
\begin{aligned}
& 3: 5,73: 14,73: 17, \\
& 4: 2,144: 5,166: 4,
\end{aligned}
\] & \[
\begin{aligned}
& \text { collection }[2]-80: 23, \\
& 143: 20
\end{aligned}
\] \\
\hline 207:13, 207:19, & catastrophe [3]-62:9, & characteristics [3] & \[
99: 8,243: 23,
\] & colloquially \([1]\) \\
\hline :6, 212:18, & 121:14 & 129:10, 153:7, & \[
43: 24,244: 3
\] & 119:20 \\
\hline \[
1: 21,215: 10,
\] & catastrophic [2] & 234:15 & 4:19 & colluvial [42]-14:12, \\
\hline :21 & 89:12, 121: & characterization [1] - & clays [5] - 81:1 & \[
15: 12,15: 14,15: 23
\] \\
\hline campus [2]-14:10, & catch [2] - 275:2, & & 110:10, 244: & 16:10, 27:24, 28:2, \\
\hline 190:18 & & characterize [1] & & 8:13, 28:20, 28:23, \\
\hline cannot [5]-61:22, & categorize [2] - 43:4, & charge [3]-124:11, & \[
\begin{gathered}
\text { claystone }[10]-15: 1, \\
15: 2,15: 5,15: 18,
\end{gathered}
\] & \[
\begin{aligned}
& \text { 29:8, 29:10, 29:20, } \\
& 30: 1,30: 5,45: 17
\end{aligned}
\] \\
\hline
\end{tabular}

65:8, 70:12, 72:3,
72:4, 81:10, 110:6, 110:22, 111:10, 148:19, 149:11, 204:13, 241:17, 241:24, 242:6, 242:18, 243:4, 243:10, 243:11, 243:14, 246:2, 246:3, 246:7, 246:8, 246:9, 252:3 colluvium [16]-14:17, 22:25, 32:15, 32:16, 33:6, 45:19, 70:16, 70:21, 173:11, 185:19, 196:24, 204:9, 242:8, 242:10, 245:13, 245:23
combination [3] -
102:1, 157:19, 228:3
combine [1] - 177:13
combined [1]-265:24
comfortable [1] - 6:11
comforting [1] - 253:4
coming [33] - 37:23,
67:7, 87:4, 95:5, 96:2, 96:21, 97:10, 113:8, 120:16, 120:19, 120:23, 122:3, 122:21, 132:1, 141:24, 142:21, 144:1, 162:11, 165:10, 166:25, 194:5, 194:13, 229:12, 239:17, 240:11, 250:4, 251:24, 254:9, 254:13, 256:25, 258:14, 263:12, 270:7 comment [5]-44:22,
124:1, 129:22, 156:6, 220:7
comments [2] 139:14, 175:10 commerce [2]-61:1, 61:2
commercial [3] 60:19, 61:11, 188:14 commission [4] -
10:13, 33:25, 97:16, 205:13
commissioned [1] 23:15
committee \({ }_{[1]}\) - 43:25 communicate [1] 260:7 communicated [2] 94:20, 99:14
community \({ }_{[11]}\) 39:1, 39:4, 39:9, 94:22, 96:3, 96:14, 195:9, 206:18, 212:23, 272:1, 272:6 compact [3]-114:4, 242:22, 243:3 compacted [7] 15:16, 22:8, 72:12, 114:7, 114:15, 114:16, 243:6 compactive \({ }_{[1]}\) 114:3 companies [3] 44:12, 96:12, 106:21 company [12]-26:10, 46:22, 46:24, 46:25, 48:5, 48:24, 59:13, 68:12, 191:5, 260:10, 260:22
comparability [1] 88:19 comparable [2] -
41:11, 93:6 comparatively \({ }_{[1]}\) 156:13
compared [3] -
175:12, 181:12, 200:5
comparing [2]-41:8, 41:18
competent [3]-81:8,
112:10, 112:14
completed [2] 163:25, 188:19
completely [2] 185:11, 258:2
compliance [3] 93:23, 93:24, 203:2
composed [1] - 246:2
compressed [1] -
72:13
compromised [4] 89:5, 120:13, 123:2, 123:3
computations [3]83:9, 138:25, 139:25
computer [4]-54:19, 115:8, 118:8, 127:4
computers \({ }_{[1]}\) - 127:1
conceivably [2] -
111:21, 231:10
concentrate [1] 56:23
concern [18] - 99:8, 99:17, 99:19, 100:12, 100:16, 100:20, 104:21, 202:17, 207:10, 245:8, 245:9,

246:16, 259:17,
262:4, 264:13,
270:24, 271:3, 272:7
concerned [9]-79:20,
79:23, 120:14,
124:25, 244:6,
244:9, 258:2, 264:3, 271:2
concerning [1] -
126:16
concerns [18]-25:12,
94:19, 98:15, 98:21,
98:25, 99:15, 101:6,
131:21, 132:25,
139:14, 166:8,
207:13, 207:18, 254:18, 255:3, 259:22, 261:3, 261:7
concluded [1] - 100:9
conclusion [2]-38:5, 158:24
concrete [2]-29:19,
119:19
condition [11] - 17:7,
17:15, 79:3, 108:9,
111:7, 121:18,
178:19, 212:9,
252:20, 255:14, 258:21
conditions [35] -
13:22, 14:14, 16:22,
16:24, 17:1, 17:5,
17:6, 17:10, 22:13,
26:12, 30:10, 31:6,
53:12, 53:13, 55:24,
82:13, 89:25, 92:12,
96:13, 106:17,
126:4, 156:10,
169:23, 176:11,
180:10, 186:20,
186:24, 200:3,
211:1, 228:2, 243:7,
256:10, 258:6,
258:8, 260:23
conduct [6]-26:23,
26:25, 33:10, 37:14, 57:4, 109:4
conducted \([9]-22: 14\),
23:10, 23:11, 23:23,
41:19, 57:11, 107:1,
109:10, 127:15
conduit \({ }_{11]}-254: 13\) confidence [1] 269:15
confident [1]-259:12 configuration [3] 85:15, 216:5, 233:12
confirm [1]-58:3
confusing [1] - 17:24
congestion [1] -

220:25
conjunction [6]-49:9,
49:14, 97:20,
157:21, 195:8, 270:4
connected [1] -
143:14
connection [1] - 89:15
Conservation [2] 205:3, 205:9
conservation [5] -
90:7, 97:18, 142:7, 198:11, 198:22
consider [11]-25:25,
48:14, 48:16, 48:19,
49:20, 50:1, 52:1,
58:17, 58:19, 78:6, 116:21
consideration [2] 83:20, 94:3
considerations [2] 170:20, 257:10
considered [7] 48:17, 49:25, 52:12, 53:20, 58:14, 58:15, 157:5
considering [4] -
79:15, 201:2, 206:25
constitutes [2] -
11:11, 181:25
construct [6]-14:10,
34:9, 110:12,
115:22, 163:5,
186:16
constructed \([7]\) -
110:8, 115:15,
115:21, 117:8,
158:8, 213:24,
234:12
constructing [1] 181:7
construction [40] -
11:16, 11:18, 11:22,
37:19, 40:14, 67:14,
74:9, 81:7, 83:25,
102:7, 108:24,
114:2, 114:3, 125:10, 128:10, 128:24, 129:9, 152:7, 152:10, 178:1, 180:4, 181:4, 185:14, 185:25, 197:11, 205:7, 205:19, 207:16, 209:14, 209:17, 215:14, 220:22, 220:24, 222:25, 223:4, 226:23, 241:8, 250:22, 256:6, 260:18
consultant \([1]-47: 8\)
consultants [2] -
47:13, 204:21
consulted [1] - 48:6
consulting [1] -
131:12
contacted [1] - 236:4
contain [2]-270:1, 275:11
contained [2]-275:6, 278:7
contains [1] - 263:18
content [2]-115:9,
115:10
context [1]-100:7
Continental [1] 52:24
contingencies [3] -
188:17, 189:3, 189:8
continuance [1] - 6:9
continue [3]-94:17,
149:23, 158:25
Continued [1] - 3:1
continued [1] - 165:17
continuing [2] - 159:2,
159:5
contour [1]-250:2
contours [3] - 152:4, 250:17
contractor [11] -
125:19, 127:19, 128:15, 129:5, 139:4, 139:5, 139:6, 139:17, 185:14, 208:14, 260:7
contractor's [2] -
40:24, 92:7
contractors [2] 92:16, 180:12
contradictory [1] 270:10
contribute [1] - 91:24
control [4]-75:23,
90:9, 255:22, 257:2
controlled [2] -
142:15, 179:17
controlling [1] -
178:21
controls [1] - 256:22
convene [1] - 6:4
conversations [2] -
98:9, 210:13
convey [1] - 253:21
coop [1]-124:12
copies [1]-7:11
copy \({ }_{[2]}-7: 20,9: 5\)
core [2]-196:25,
233:7
cores [3]-65:20,
175:16, 181:14
corn [1]-139:21
corner [2]-18:1, 202:9
corners [5]-124:16, 223:11, 223:17, 251:19, 251:20 cornerstone [1] 170:9
Corporate [1] - 2:15
Corps [3]-162:19, 163:10, 163:18 correct [94]-15:25, 20:21, 21:19, 23:10, 24:12, 25:16, 25:20, 25:24, 30:23, 32:6, 32:19, 45:6, 45:19, 62:14, 65:7, 65:17, 66:22, 67:2, 67:13, 67:14, 67:20, 68:2, 68:17, 76:3, 77:1, 77:2, 79:6, 80:18, 86:25, 87:5, 87:10, 89:4, 89:11, 89:16, 91:14, 91:18, 92:9, 92:14, 94:6, 99:1, 101:9, 105:15, 145:8, 153:24, 156:11, 157:4, 157:7, 157:11, 164:25, 167:21, 172:16, 172:24, 173:17, 175:20, 175:21, 176:14, 177:20, 177:21, 178:3, 185:4, 186:4, 188:6, 188:7, 193:2, 201:8, 208:4, 211:13, 211:18, 220:8, 222:13, 222:17, 227:14, 228:7, 230:18, 230:22, 234:20, 236:23, 245:12, 252:5, 252:12, 261:25, 264:11, 265:2, 265:3, 267:8, 269:24, 270:18, 271:23, 271:25,
274:6, 274:13, 274:14, 275:18, 278:12
correctly [8]-21:11, 53:1, 61:5, 61:15, 79:7, 114:21, 180:12, 197:6
correlate [2]-107:14, 139:24
correspondence \({ }_{[1]}\) 108:13
cost [14]-62:17, 102:10, 103:9,

111:20, 168:9,
213:2, 223:12,
227:20, 228:5,
236:16, 247:17,
247:20, 259:10,
262:11
costs [6]-61:9, 61:10, 101:21, 124:17, 148:8, 220:17
council [2]-34:1, 97:16
counsel [5] - 46:13,
104:9, 123:11,
123:17, 183:11
County [6]-60:21,
68:21, 69:1, 69:14,
95:2, 142:9
county [12]-69:3,
95:15, 97:7, 211:6,
211:22, 228:19,
229:6, 230:3, 230:4,
230:5, 230:17, 270:5
couple [10]-21:3,
60:2, 117:21, 164:6,
170:16, 174:11,
230:6, 248:15,
254:21, 255:12
course [18] - 18:5, 52:9, 52:12, 54:15, 57:18, 79:10, 83:4, 87:8, 110:10, 111:1, 114:11, 123:9, 133:25, 135:25, 148:24, 150:17, 210:23, 246:7
court [1]-191:15
COURT \({ }_{[1]}-1: 23\)
Court [1] - 1:23
courtesy [1] - 10:7
courts [2]-184:25, 190:10
cover [5] - 40:25, 41:3,
42:11, 182:20, 266:6
coverage [1] - 92:8
covered [2]-125:9, 169:2
covering [2]-124:22, 163:17
covers [2]-186:6, 207:12
Covid [1] - 6:11
crack [9]-39:22, 40:8,
40:20, 40:23, 66:8, 67:1, 140:6, 168:10, 260:5
cracking [2]-26:12, 41:24
cracks [13] - 39:13,
40:12, 40:17, 66:11, 73:3, 73:8, 73:9,

73:10, 73:11, 91:10,
91:12, 91:19, 260:4
Cranberry [1] - 2:11
cranes [1]-251:3
create \([9]-14: 5\),
83:14, 100:23, 158:4, 159:18, 161:22, 201:25, 206:17, 273:25
created [3]-158:5,
159:19, 205:14
creating [2]-35:23,
87:16
credits [2] - 219:2, 219:4
creek [2] - 162:19,
225:1
Creek [11]-18:23, 18:25, 19:2, 19:4, 19:12, 96:18, 96:20,
142:3, 222:3,
224:22, 225:5
creeks [1]-15:5
creep [1] - 246:4
creeping [1]-214:11
crest [1]-172:13
criteria [3]-14:7,
27:1, 206:15
critical [1]-125:5
cross [11]-10:1,
16:13, 42:18, 54:11,
55:6, 55:7, 55:9,
83:18, 212:2, 246:18
Cross [14]-4:5, 4:6,
4:6, 4:7, 4:10, 4:11,
\(4: 11,4: 12,4: 12\),
4:15, 4:15, 4:16,
4:16, 4:17
CROSS [8]-20:1,
47:20, 60:13, 76:12,
77:25, 85:23, 175:7,
266:23
cross-examination [1]
-10:1
CROSS-
EXAMINATION \({ }_{[8]}\) -
20:1, 47:20, 60:13,
76:12, 77:25, 85:23,
175:7, 266:23
cross-hatched [1] 212:2
cross-section [6] 16:13, 55:6, 55:7, 55:9, 246:18
cross-sections [2] 54:11, 83:18 crossed [1] - 149:16
crown [1] - 166:21
crushing [1] - 250:25
crystal [3] - 30:24,
\(31: 15,65: 2\)
cubic \([4]-60: 22,63: 8\) 63:10, 241:22
culvert [1] - 194:13
cured [1]-68:5
current [10]-162:10,
184:17, 184:20,
185:1, 191:25, 207:1, 216:4, 218:13, 222:21, 248:5
Curriculum [1]-12:19
curve [5]-74:19,
145:10, 268:17,
268:20, 275:22
curved [1]-220:14
customarily [1] 128:25
cut \({ }_{[21]}-56: 15,81: 20\),
82:11, 83:13, 87:23,
95:18, 113:11,
113:21, 119:3,
122:5, 124:16,
134:15, 134:25,
135:9, 135:13,
177:2, 223:12,
223:17, 239:15,
241:17, 242:2
cutoff [1] - 214:10
cuts [2]-55:17, 82:10
cutting \([11]\) - 55:17,
56:11, 134:15,
135:3, 144:1, 179:4, 239:17, 251:19, 251:20, 252:8
\begin{tabular}{c}
\hline \(\mathbf{D}\) \\
\hline dam \([11]-163: 9\), \\
163:10, 163:11, \\
163:18, \(163: 20\), \\
172:8, 172:11, \\
172:18, 172:19, \\
196:13, \(225: 5\)
\end{tabular}
damage \([7]-26: 17\),
26:19, 63:4, 63:7,
91:16, 209:2, 260:6
damaged [1]-260:15
damages [1] - 83:2
dampened [1] - 207:5
dams [1]-196:13
Dan [2]-8:7, 174:14
dangerous [3] - 11:22, 25:25, 26:3
dangers [2]-11:17, 240:5
DANIEL [2]-2:14, 3:5
Daniel [1] - 174:8
data [12]-54:11,
54:12, 54:17, 64:14,

80:22, 117:19,
127:10, 127:11,
139:23, 268:14,
268:21
date [1]-181:11
Dave [2]-172:7, 173:1
David [1] - 2:6
DCNR [1] - 205:1
deal [8]-53:17, 66:7,
132:24, 149:19,
160:6, 193:24,
250:6, 250:8
dealing \([3]-50: 3\),
182:4, 205:12
death [2]-74:20, 74:22
debris [1]-135:23
decent \({ }_{[1]}\) - 195:4
decide \([5]-6: 18,38: 2\),
94:14, 104:12, 220:4
decided [1] - 218:4
deciding \({ }_{[1]}\) - 206:19
decision [11] - 123:16,
167:20, 167:21,
171:25, 172:2,
188:12, 206:14,
237:8, 237:9,
252:13, 261:21
declined [1] - 174:21
decreased [1] - 14:20
decreases [1] - 110:19
deep [20]-22:24,
28:8, 33:7, 33:8, 65:10, 110:23,
111:11, 111:12,
119:13, 119:21,
131:9, 133:5,
136:17, 156:24,
165:14, 169:19,
185:19, 240:15,
241:4, 274:19
deeper [4]-32:15,
156:25, 233:8, 233:18
deepest \([1]\) - 28:6
defer \({ }_{[1]}\) - 77:16
define [2]-77:14, 155:2
defined [1]-167:1
definitely [4]-99:16,
99:21, 100:8, 101:7
definition [2]-39:25,
78:22
definitions [5] -
155:10, 155:11,
155:21, 155:25,
156:1
deforestation [2] -
84:20, 161:13
degree [9]-40:5,
\begin{tabular}{|c|c|c|c|c|}
\hline 40:7, 80:3, 91:9, & describes [2]-14:25, & details [2]-44:10, & developer's \({ }_{[1]}\) - & 115:2, 132:25, \\
\hline 105:9, 142:25, & 78:25 & 54:3 & 131:5 & 145:6, 180:1, \\
\hline 258:7, 266:1, 269:14 & design [73]-10:12, & detention [14]-141:7, & developers [10] - & 92:13, 201:19, \\
\hline degrees [4]-35:9, & 10:13, 10:19, 22:11, & 141:9, 141:15, & 102:24, 148:1 & 23:17, 204:23, \\
\hline 39:21, 45:20, 214:11 & 22:13, 25:9, 25:13, & 43:14, 173:9 & 48:7, 149:9 & :17, 215 \\
\hline delays [1]-136:9 & 31:7, 33:13, 34:2, & 173:22, 173:24 & 149:24, 150:2, & 218:12, 220:5, \\
\hline demolished [3] & 34:4, 34:9, 37:2, & :6, 195:15 & 50:12, 150:16, & :10, 221: \\
\hline 167:6, 167:8, 167:10 & 37:17, 37:19, 54:1, & 96:8, 206:10, & 150:18, 182:5 & 239:11, 248:8 \\
\hline dense [1] - 244:5 & 55:25, 57:7, 62:19, & 3:14, 213:16 & developing [10] - 35:5, & differential [2] \\
\hline densely [1] - 90:16 & 67:6, 67:17, 68:3 & 3: & 35:8, 37:18, 39:3 & 204:19, 220:18 \\
\hline density [10]-114:5, & 68:5, 73:24, 74:15, & determine [20] & 81:6, 101:3, 108:10, & differently [3] - 75:20, \\
\hline 114:7, 114:8, & 74:17, 75:5, 75:10, & 22:24, 26:14, 37:15, & 152:25, 185:6, 258:4 & 18:24, 223:1 \\
\hline 114:12, 114:17, & 81:17, 81:25, 83:15, & 55:24, 56:10, 64:20, & development [70] - & difficult [4] - 130:7 \\
\hline 115:1, 115:6, 115:9, & 85:17, 90:1, 90:23, & 5:20, 98:22, & 13:5, 15:10, 17:2 & 156:2, 203:2, 267:17 \\
\hline 207:7, 243:12 & 91:4, 93:5, 93:15, & 9:11, 148:1 & 17:4, 17:12, 27:9 & dig [10]-28:7, 66:3, \\
\hline densometer [1] & 94:2, 97:24, 98:5 & 6:2, 161:3, & 27:14, 31:2, 33:22, & 1:10, 86:10, 98:18, \\
\hline 115:7 & 98:6, 99:10, 105:3, & 163:14, 194:5, & 34:16, 35:2, 35:10, & 3:19, 186:18, \\
\hline deny [1]-261:1 & 105:12, 124:6, & 0:6, 235:16 & 35:15, 35:20, 35:22, & 0:11, 250:1 \\
\hline DEP [8] - 90:6, 93:12, & 124:17, 125:12, & 43:2, 256:16, & 36:2, 37:7, 38:11, & 261:14 \\
\hline 204:24, 205:2, & 126:8, 128:14 & 268:15, 268:2 & 38:19, 46:2, 46:6, & digging [3]-186:1, \\
\hline 205:5, 205:6, & 131:5, 146:1, 146:3, & determined [13] - & 48:9, 50:6, 50:14 & 232:22, 241: \\
\hline 205:10, 205:17 & 151:15, 151:24, & 24:23, 24:25, 98:7 & 51:5, 51:20, 60:20, & dike [1]-214:9 \\
\hline Department [1] - & 174:1, 181:9, & 8:20, 168:3, 168:4, & 61:11, 61:13, 61:25, & diligence [27] - 10 \\
\hline 82:20 & 182:25, 187:3, & 73:13, 175:17, & 62:24, 64:16, 68:8, & 13:19, 13:21, 13:23, \\
\hline DePaul [41] - 3 & 190:8, 194:7, 196:5, & 9:16, 185:16 & 39:22, 101:15, & :21, 25:10, 37:10 \\
\hline 4:5, 4:6, 4:15, 5:6, & 197:12, 199:6, & 86:14, 186:15, & 102:11, 102:18, & :23, 56:20, 57:13, \\
\hline 7:19, 8:7, 9:2, 9:7, & 13:24, 214:20 & 207:21 & 105:16, 131:17, & 76:25, 77:3, 89:15, \\
\hline 9:11, 11:7, 18:6, & 233:20, 254:18, & determining \({ }_{[1]}\) - & 132:21, 133:8, & :7, 94:10, 107:2, \\
\hline 18:13, 19:23, 19:24, & 259:2, 268:10 & 160:19 & 4:23, 136:12, & 2:6, 143:17 \\
\hline 20:3, 42:14, 42:15, & 268:16, 269:15 & detriment [12]-39:10, & 141:16, 147:24, & 7:18, 157:24, \\
\hline 42:23, 43:2, 43:16, & 271:9, 272:21 & 39:12, 39:15, 39:17, & 8:4, 148:16 & 88:4, 188:9, 191:2, \\
\hline 43:22, 44:2, 44:24, & designated [3] & 39:20, 39:21, 39:24, & 148:21, 148:24, & 2:6, 237:5, 263:2, \\
\hline 47:9, 47:21, 60:14, & 69:17, 153:10, & 40:9, 41:14, 41:16, & 1:3, 151:19 & 270:20 \\
\hline 149:20, 154:9, & 153:11 & 158:4, 159:18 & 152:17, 156:13, & dimensions [1] - \\
\hline 154:11, 156:3, & designed [20]-10:20, & detrimental [3] - 39:8, & 156:14, 160:21, & 117:20 \\
\hline 158:17, 158:22, & 30:3, 30:18, 62:2, & 80:4, 180:10 & 181:13, 181:17, & direct [2] - 45:16, \\
\hline 174:21, 181:21, & 62:19, 67:5, 79:17 & develop [23]-17:17, & 181:19, 181:24, & \(7: 1\) \\
\hline 254:22, 255:6, & 88:1, 90:4, 118:8, & 21:14, 25:19, 34:14, & 182:1, 185:9, & DIRECT \({ }_{[1]}-12: 13\) \\
\hline 257:12, 258:10, & 141:12, 144:8, & 6, 94:18, 100:14, & 9:20, 198:1 & Direct [1] - 4:5 \\
\hline 266:20, 276:19 & 193:17, 195:20 & 00:18, 102:5, & 0:25, 223:21, & directed [7]-85:12, \\
\hline DePaul's [1]-43:21 & 209:24, 209:25 & 02:9, 102:24, & 237:13, 237:18, & 142:14, 167:25, \\
\hline deposed [8]-12:11, & \[
\begin{aligned}
& \text { 240:4, 253:23, } \\
& \text { 269:23, 271:20 }
\end{aligned}
\] & 103:5, 103:9, & \[
\begin{aligned}
& \text { 256:21, 262:21, } \\
& \text { 271:11 }
\end{aligned}
\] & 190:16, 191:13, \\
\hline \[
\begin{aligned}
& 47: 18,60: 11,77: 23 \\
& 85: 21,106: 4,121: 8
\end{aligned}
\] & \[
\begin{gathered}
\text { 269:23, 271:20 } \\
\text { designing [8] - 30:11, }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 103:12, 108:12, } \\
& \text { 122:9, 133:12, }
\end{aligned}
\] & 271:11 developments \([6]\) - & \begin{tabular}{l}
262:2, 271:4 \\
directing [2]-258
\end{tabular} \\
\hline \[
\begin{aligned}
& 85: 21, \\
& 175: 5
\end{aligned}
\] & 67:12, 90:12, & 3:21, 134:10 & \[
123: 4,146: 4,149: 8 \text {, }
\] & 259:3 \\
\hline deposit [1] - 245:17 & 194:24, 196:4 & 134:13, 149:25, & 156:15, 183:1, & direction [4]-72:17, \\
\hline deposited [1]-246:15 & \begin{tabular}{l}
204:24, 268:11 \\
designs [3]-36:5,
\end{tabular} & 198:11 & \begin{tabular}{l}
214:24 \\
develops [2]-246:5,
\end{tabular} & \[
72: 18,220: 14,271: 8
\] \\
\hline deposits [6]-27:25 28:2, 28:6, 30:6, & \[
94: 2,190: 4
\] & \[
37: 11,100: 23
\] & 246:6 & directive [3]-191:2
192:2, 192:4 \\
\hline 204:14, 245:18 & despite [2]-123:3, & 5:17 & diagram [1] - 120:1 & directly [4]-119:8 \\
\hline \[
\text { depth }[5]-85: 1 \text {, }
\] & 213:16 & developed [12] & dictating [1]-225:6 & \[
120: 6,135: 12,
\] \\
\hline 111:15, 136:19, & destabilize [4]-28:10, & 17:18, 36:22, 38:13, & die [1] - 215:3 & 270:13 \\
\hline 240:17, 242:5 & 86:8, 212:13, 234:16 & 38:14, 38:23, 55: & diesel [1]-153:20 & director \({ }_{[1]}\) - 142:9 \\
\hline derived [1]-242:20 & destabilized [1] & 55:8, 150:24, 151:1, & difference [5] - & dirt [7] - 113:1, \\
\hline describe [2]-89:12, & 213:7 & 168:24, 273:11, & \[
\begin{aligned}
& \text { 133:15, 133:19, } \\
& \text { 153:7, 204:3, 220:20 }
\end{aligned}
\] & 161:21, 166:5, \\
\hline 244:18 & detail [5] - 30:15, 33:2,
62:16, 77:17, 92:17 & \begin{tabular}{l}
275:14 \\
developer
\end{tabular} & \begin{tabular}{l}
153:7, 204:3, 220:20 \\
different [27] - \(8: 20\),
\end{tabular} & 169:3, 250:12, \\
\hline described [9]-22:15, 25:5, 26:18, 55:2, & detailed [5] - 33:11, & 101:10, 108:9, & 8:21, 41:14, 67:15, & disagree \({ }_{[1]}\) - 154:19 \\
\hline 81:7, 137:14, 145:7, & 36:3, 50:19, 151:24, & 108:19, 109:1, & 75:9, 75:10, 88:23, & disappointed [1] - \\
\hline 175:19, 240:1 & 156:1 & 111:5, 124:12 & 90:1, 90:13, 105:5, & 171:9 \\
\hline
\end{tabular}
disaster [1] - 41:12 discharged [1] 195:15 discover [1] - 237:1 discovered [2] 32:10, 33:20 discuss [1] - 95:16
discussed [5] - 64:12, 84:2, 135:20, 203:4, 239:2
discusses [1] - 50:15 discussing [2] - 59:3, 75:14
DISCUSSION [3] 68:20, 274:10, 276:24
discussion [2] 88:17, 191:24 discussions [5] 51:12, 51:18, 97:7, 97:12, 98:12
displace [2]-121:24, 218:4
displacing [2] 219:16, 226:2
disposed [1] - 227:9 dispute [2] - 58:2, 58:3
disrespect [1] 154:13
disrupted [1] - 221:16
dissimilar [1] - 62:13
distance [3] - 6:13, 88:3, 203:1
distantly [1] - 222:7 distribution [1] 155:20
DISTRICT [2] - 1:13, 2:13
District [6] - 6:10, 94:5, 132:7, 236:5, 236:9, 236:11
district [50]-7:3, 8:19, 13:18, 14:4, 14:8, 14:11, 15:2, 15:6, 15:8, 16:2, 23:12, 23:13, 23:16, 37:22, 45:10, 45:18, 47:5, 47:14, 86:13, 96:24, 98:11, 98:23, 99:14, 100:3, 124:16, 124:25, 125:6, 132:19, 133:9, 145:4, 158:9, 159:23, 160:3, 171:19, 190:24, 192:10, 198:12, 198:23, 226:21, 228:14, 230:21, 236:24, 248:7,

251:20, 252:6,
257:17, 260:9, 270:21, 271:3, 272:22
district's [1]-11:9 disturb [3]-234:1, 234:24, 273:3 disturbance [4]-79:8, 79:10, 79:12, 79:18 disturbed [3] - 79:5, 238:23, 266:5 disturbing [3]-205:7, 234:3, 237:15
divided [1] - 78:10 dividing [1] - 170:21 doctor \({ }_{[1]}\) - 206:4 document [3]-77:6, 101:18, 202:5 documentation [3] 181:4, 183:7, 203:12 documented [2] 180:13, 202:3 documents [4]-8:20, 8:21, 58:10, 132:1
dogs [1] - 258:19
dohr's [1]-23:8
dollars [9]-61:9,
102:9, 102:15, 109:16, 160:20, 168:12, 196:17, 224:12, 247:22
donated [1] - 236:8
donates [1]-101:19
done [125]-22:19,
24:24, 26:2, 26:4, 26:5, 26:7, 27:12, 29:22, 31:5, 32:22, 33:24, 36:12, 37:17, 43:20, 49:7, 53:20, 54:3, 55:18, 75:5, 80:24, 81:16, 82:18, 82:24, 86:9, 90:20, 90:22, 92:13, 97:5, 98:11, 99:11, 99:13, 104:1, 104:3, 108:6, 109:6, 109:24, 109:25, 110:1, 110:4, 114:19, 114:20, 114:21, 115:25, 117:1, 118:18, 124:3, 125:19, 126:5, 127:21, 128:21, 131:9, 136:10, 136:13, 136:23, 137:10, 137:18, 137:23, 138:2, 138:9, 138:19, 139:16, 139:20, 140:10, 140:11,

140:13, 140:18,
146:23, 147:18,
147:20, 147:21,
147:22, 148:11,
165:16, 168:2,
168:3, 168:13,
174:1, 180:5, 180:9,
185:6, 185:11,
187:2, 188:13,
190:8, 192:6, 195:6,
197:5, 199:16,
199:17, 203:17, 204:4, 204:16,
208:1, 208:12, 208:21, 208:24, 209:5, 214:2, 220:16, 222:6, 222:7, 223:1, 225:8, 225:13, 233:10, 233:15, 234:7, 237:5, 239:13, 239:14, 241:7, 249:7, 249:10, 252:14, 252:15, 255:17, 258:6, 258:20, 261:23, 263:12, 272:11, 274:5, 276:25
dot [3] - 101:20
dots [1]-267:11
double [1]-32:20
Doug [1] - 130:25
down [153]-14:17,
15:4, 15:17, 16:9, 19:8, 19:14, 21:6, 22:2, 22:23, 23:7, 28:5, 28:8, 29:15, 35:7, 56:15, 59:14, 60:22, 65:14, 66:6, 66:20, 67:9, 67:16, 70:13, 70:15, 70:21, 73:13, 73:25, 74:7, 80:5, 81:8, 82:6, 84:3, 86:25, 87:5, 87:7, 87:20, 88:12, 89:7, 95:5, 95:9, 97:10, 112:4, 112:6, 112:9, 112:13,
118:4, 121:3, 121:4,
122:3, 122:21,
132:23, 133:4,
133:16, 134:13,
135:16, 138:17,
140:6, 141:11,
141:20, 141:21,
141:24, 142:1,
142:19, 142:21,
142:24, 143:4,
143:21, 144:3,
144:10, 146:6,

148:19, 151:8, 151:11, 156:20, 162:12, 164:6, 165:13, 166:13, 166:18, 167:5, 167:14, 167:15, 168:8, 170:12, 170:23, 171:5, 173:8, 173:14, 173:15, 177:8, 178:10, 184:6, 184:10, 184:24, 186:18, 186:22, 187:17, 192:16, 194:4, 194:5, 194:13, 212:9, 219:15, 220:21, 221:16, 223:11, 229:4, 229:10, 229:14, 229:20, 231:2, 231:12, 232:15, 242:21, 245:16, 245:22, 245:25, 246:4, 246:11, 246:14, 247:15, 248:21, 248:22, 248:24, 250:4, 251:24,
252:7, 252:22, 253:21, 254:4, 254:6, 254:13, 255:24, 256:25, 257:7, 257:11, 258:14, 258:22, 259:15, 260:3, 260:14, 268:8, 269:19, 270:2, 270:4, 270:6, 270:7,
271:1, 274:25, 275:16, 276:2, 276:3 downgraded [2] 191:20, 193:1 downhill [4]-70:3, 70:5, 79:25, 93:2 downsized [1] 262:13 downstream [6] 144:9, 163:6, 163:12, 163:18, 165:5, 222:10
Dr \({ }_{[1]}\) - 4:17
DR [32]-206:8, 211:12, 211:16, 212:4, 212:15, 212:22, 213:4, 213:15, 214:14, 215:5, 215:21, 215:23, 216:3, 216:14, 217:3, 218:6, 218:11,

219:1, 219:5, 219:17, 219:22, 220:5, 220:9, 220:24, 221:3, 222:6, 222:11, 222:14, 222:18, 224:6, 224:9, 224:18
drafted [1] - 20:24
drafting \({ }_{[1]}-45: 12\)
drafts [1] - 231:24
drain [3]-113:7, 254:7, 254:9
drainage [13]-84:4, 95:9, 97:9, 113:15, 113:16, 135:19, 140:16, 140:20, 143:21, 144:9, 146:16, 175:13, 250:21
drained [1] - 275:16
drains [16]-67:10, 81:14, 81:15, 81:16, 81:17, 81:20, 82:1, 113:10, 113:12,
113:21, 143:13,
226:17, 226:18, 240:2, 240:22, 250:7
dramatic [1] - 195:12
dramatically \({ }_{[1]}\) 199:25
drastically [1] 110:18
drawing [6] - 18:4,
85:11, 152:12, 202:10, 263:17, 264:9
drawings [2] - 93:16, 238:12
drill [13]-22:2, 30:9, 33:5, 54:5, 54:7, 54:8, 54:10, 55:21, 56:17, 119:18, 136:14, 140:6, 249:1
drilled [8]-55:23, 56:4, 56:19, 80:25, 119:19, 233:7, 249:2, 249:3
drilling [9]-57:1, 57:2, 71:6, 101:22, 118:2, 138:24, 140:7, 151:4, 157:24
Drive [4]-1:24, 2:10,
2:15, 278:15
drive [1]-88:11
driven [4]-124:13,
157:1, 165:8, 250:16
driveway [2]-24:3,
166:13
driveways [2] -
212:10, 230:16
dropping \({ }_{[1]}\) - 231:22 drove [1] - 160:9
dry [9]-66:25, 67:1,
67:2, 112:23, 113:1, 113:5, 113:14, 179:12, 240:12
due [38]-6:11, 10:17, 13:19, 13:21, 13:23, 14:20, 23:5, 23:21, 25:10, 32:13, 37:10, 40:12, 40:13, 46:22, 56:20, 57:13, 76:25, 77:3, 77:12, 89:15, 94:7, 94:10, 107:2, 142:5, 143:17, 153:14, 157:18, 157:23, 188:4, 188:8, 191:1, 232:6, 237:5, 242:21, 245:25, 263:2, 267:9, 270:20 duly [8]-12:10, 47:17, 60:10, 77:22, 85:20, 106:3, 121:7, 175:4 dumped [3]-22:9, 165:12, 247:4 dumps [1] - 145:12 during [28]-27:14, 33:20, 38:19, 40:2, 64:19, 67:14, 83:10, 85:17, 113:17, 113:19, 114:18, 117:11, 117:12, 125:9, 125:21, 128:23, 129:8, 185:5, 185:9, 185:14, 185:25, 187:4, 187:22, 195:12, 195:17, 197:22, 209:16, 256:6
dying \({ }_{[1]}-265: 13\)
\(\bar{E}\)
early [2]-98:9, 263:2 earth [14]-60:22,
120:1, 122:3, 125:21, 176:22, 207:5, 207:7, 207:15, 209:15, 210:3, 210:11, 223:5, 262:22, 263:23
earthquake [2] 118:22, 118:24 earthquakes [2] 179:14, 179:18 easier [1]-43:4 easily \({ }_{[1]}\) - 79:4
east \([3]-21: 8,153: 8\), 153:12
east-west [1] - 21:8
eastern [1] - 18:19
easy \([1]-21: 14\)
EBH [2] - 190:9, 192:6
echos [1]-221:7
Eckert [1]-3:10
Eckles [2]-192:7, 192:8
economic [2]-161:1, 161:2
economics [1] -
273:15
edge [4]-122:14, 165:2, 229:14, 229:23
Edgeworth [14] -
94:25, 99:24, 101:10, 131:14, 133:10, 183:20, 189:18, 190:11, 197:18, 198:1, 198:8, 202:7, 234:7, 237:20
educate [1] - 54:6 educated [2]-172:1, 258:1
education [1] - 191:16
effect \([11]\) - \(38: 22\),
40:5, 66:6, 66:14,
74:9, 235:21, 241:1, 256:14, 256:16, 265:17, 271:25
effectively [1]-236:8
effects [2]-75:10, 90:15
efficient \({ }_{[1]}-143: 1\)
effort [6] - 84:19,
94:23, 131:24, 149:11, 151:2, 151:15
efforts [3] - 123:3,
180:24, 181:11
egress [4]-189:13, 216:20, 216:24, 217:1
eight [8]-23:7,
114:16, 186:18, 199:3, 247:22, 268:25, 269:2, 269:19
eighties [1] - 127:1
either \([6]-37: 8,66: 5\), 120:5, 165:21, 183:12, 225:14
electric [2]-120:10, 120:23
electrical [2]-121:14, 123:1
elegantly \({ }^{[1]}\) - 78:2
element \([1]\) - 125:8
elementary [1]-193:8
elements [3]-80:12,
116:1, 232:7
elevation [11]-64:24,
75:19, 172:18,
178:11, 225:7,
226:3, 232:1, 233:2,
246:15, 247:14,
267:23
elevations [3] -
163:15, 242:21, 248:1
elevator \({ }_{[1]}\) - 203:6
eliminate [1]-203:9
eliminated [1] -
252:17
eliminating \({ }_{[1]}\) -
239:15
elsewhere [1] - 263:9
embankment [19] -
81:7, 81:21, 82:8,
110:14, 112:11,
112:13, 112:23,
113:10, 113:13,
116:4, 116:21,
125:11, 187:14,
187:20, 200:24,
240:12, 263:8,
263:10, 263:13
embankments [8]-
54:9, 54:22, 84:2,
149:15, 176:20,
177:18, 178:16, 263:2
emergency [6] -
189:13, 189:24,
196:15, 215:19,
215:22, 216:24
empilement [1] 214:3
empilements [1] 196:14
encounter \({ }_{[12]}-15: 8\),
17:14, 24:15, 30:22,
36:15, 67:15, 67:16,
72:5, 99:2, 113:17,
128:13, 132:13
encountered [4] -
31:12, 31:13, 32:8, 101:11
encourage [1] 222:24
encroaching [1] 178:12
end [15]-17:8, 20:11, 58:24, 61:11, 89:4,
89:23, 92:24,
101:20, 149:1,

170:24, 212:18,
216:7, 216:8, 234:6,
237:20
energy [2] - 114:3, 143:3
engage \([3]-16: 17\), 91:15, 139:7
engaged [11] - 10:16, 10:18, 48:24, 83:22, 125:15, 125:16, 150:10, 165:25, 256:8, 256:9
engaging [1] - 16:4
engineer [56] - 12:20,
12:21, 13:2, 18:9, 22:20, 36:18, 37:1, 44:9, 47:2, 47:3,
47:25, 48:1, 48:22,
52:6, 52:8, 53:7,
67:6, 90:2, 91:3, 93:5, 94:1, 97:2, 97:13, 108:4, 111:4, 120:11, 127:20, 128:9, 131:13, 131:25, 132:1,
135:3, 137:12,
139:7, 139:10,
139:11, 139:19,
140:22, 147:17,
147:18, 152:13,
163:10, 165:24,
180:11, 181:6,
189:8, 202:5,
202:15, 209:20,
227:25, 252:14,
254:17, 257:25,
271:21
engineered \([6]\) -
17:16, 25:13, 179:4,
208:12, 271:19,
273:7
engineering [48] -
10:21, 10:23, 14:25,
30:6, 30:7, 30:16, 36:11, 36:22, 46:22,
48:2, 54:24, 58:22,
59:13, 74:14, 90:18,
90:20, 90:21, 91:6,
104:17, 104:25,
105:10, 107:14,
107:21, 126:6,
131:12, 136:6,
138:8, 144:24,
151:3, 151:15,
153:22, 157:11,
164:18, 170:14,
170:18, 170:20,
197:12, 207:24,
209:9, 213:17,
223:5, 251:17,

253:12, 258:5,
259:20, 272:14
Engineers [2]-52:10, 59:10
engineers [33] - 9:24,
10:17, 22:20, 31:4, 48:22, 78:4, 84:16, 106:12, 106:15, 106:18, 124:8, 128:14, 152:19, 162:20, 163:19, 166:9, 167:12, 170:16, 171:20, 171:21, 180:14, 181:5, 182:22, 183:5, 187:21, 190:9, 199:16, 209:6, 214:16, 230:7, 230:10, 241:11, 249:9
enhanced [1]-189:12
ensure [2] - 38:19, 138:20
entail [2] - 83:8, 187:10
entailed [1]-111:9
entails [2] - 118:1, 181:3
enter [6]-54:19, 75:23, 76:1, 114:10, 235:14, 256:12
entered \([4]-54: 14\),
235:19, 235:20,
256:15
enters [1]-142:3
entire \({ }_{[1]}\) - 82:5
entirely [3]-40:1, 52:21, 86:13
entities [1] - 210:13
entrance [7]-201:6,
202:25, 215:18, 216:7, 229:4, 229:12
environment [2] 79:9, 186:15
environmental \({ }_{5]}\) -
14:1, 34:22, 153:23, 261:7, 272:7
Environmental \({ }_{[1]}\) -
82:20
environmentals \({ }_{[1]}\) 94:13
equal [2]-78:18,
186:11
equilibrium [1] -
110:17
equipment [12] -
65:24, 92:20, 98:18,
114:2, 114:4, 115:8,
137:3, 209:15,
211:7, 211:9,

211:20, 232:23
equivalent [1] -
265:17
Erie [1] - 72:21
eroded [5] - 45:21,
69:22, 95:6, 99:25, 133:3
eroding [1] - 210:22
erosion [9]-14:21,
69:25, 70:24,
165:11, 177:24,
210:21, 227:25,
270:7
error [11]-126:15,
126:18, 127:3,
127:8, 127:9,
127:14, 127:17,
127:24, 144:13
especially [6] - 53:9,
111:3, 179:23, 199:9, 227:6, 260:17
ESQUIRE [6] - 2:10, 2:14, 2:19, 3:5, 3:10, 3:16
essence [2] - 109:1, 119:23
essentially [3] 120:17, 122:9, 122:14
estate [2] - 189:7, 190:17
estimate [6] - 102:12, 197:3, 208:15, 224:9, 247:17, 247:20
ethics [2] - 171:21, 171:22
evaluate [9]-25:11, 26:9, 26:11, 45:11, 51:2, 102:2, 192:10, 202:15, 236:14
evaluated [4] - 25:15, 27:5, 188:7, 214:7
evaluating [4] - 13:25, 14:1, 55:16, 97:2
evaluation [9] - 13:19, 13:24, 26:16, 100:12, 101:22, 181:5, 203:11, 221:20, 248:23
event [9]-41:10, 43:18, 61:19, 61:23,
138:21, 138:22, 154:16, 226:25, 227:2
events [4]-41:11, 52:2, 221:17, 267:2 eventualities [1] 251:18
eventually [1] - 187:25
everywhere [2] 45:18, 137:8 evidence [3]-24:4, 81:2, 278:6
evident [1] - 91:19
exactly [11] - 46:2, 56:19, 56:25, 57:3, 57:5, 89:1, 110:13, 169:11, 199:16,
199:24, 263:17
EXAMINATION [21] -
12:13, 20:1, 47:20,
60:13, 64:4, 76:12, 77:25, 85:23, 104:5, 106:6, 121:10, 147:9, 164:2, 173:3, 175:7, 183:23, 206:6, 226:13, 231:4, 249:18, 266:23
examination [2] 10:1, 45:16
Examination [4]-4:8, 4:9, 4:9, 4:10
examined [8] - 12:10, 47:17, 60:10, 77:22, 85:20, 106:3, 121:7, 175:4
example [1] - 127:15
excavability [1] -
98:16
excavate [5] - 81:8, 82:5, 84:17, 136:16, 185:19
excavated [4]-29:15, 81:19, 173:14, 239:19
excavating \([8]-30: 20\),
31:12, 57:5, 67:16, 84:2, 219:15, 241:18, \(243: 1\)
excavation [10] - 31:3,
31:5, 113:17, 161:21, 172:15, 187:5, 187:9, 187:12, 187:18, 207:22
excavations [1] 187:15 excavator [3]-28:24, 29:1, 29:7 excavators [2] 28:21, 28:22 exceed [3]-73:21, 106:23, 211:10
exceeding [2] 106:20, 237:10
exceeds [1] - 181:19 except [2] - 74:20, 255:20
exception [9]-20:16, 37:24, 38:1, 153:13, 153:18, 154:4, 188:25, 202:20, 206:15
EXCEPTION [1]-1:11
excess [1] - 109:16
exchange [1] - 221:22
excuse [2]-65:13, 174:14
excusing [1] - 276:16
executive [2]-60:15,
77:3
Executive [1] - 2:10
exemption [4] -
152:22, 153:2,
155:1, 156:8
exercise [1] - 80:23
Exhibit [10] - 5:2, 5:3, 5:4, 5:6, 7:14, 7:15, 13:8, 43:14, 43:21
exhibit [7]-20:20,
20:23, 42:24, 43:15, 43:23, 157:3, 157:6
exhibits [1] - 7:21
EXHIBITS [1] - 5:1
exist [6]-17:11,
151:21, 192:18, 201:24, 237:11, 237:15
existed [1] - 69:20
existing [24] - 24:4,
26:12, 38:9, 54:13, 84:5, 84:7, 95:4, 101:13, 112:19, 162:2, 162:6, 167:8, 177:23, 184:17, 184:20, 186:12, 194:1, 202:22, 204:17, 211:24, 220:1, 228:2, 249:6, 260:23
exists [2] - 33:12, 34:17
exit [4]-215:20,
215:22, 216:25
expanded [1] - 192:12
expansions [1] -
192:9
expected [1] - 162:21
expecting [1] - 171:8
expense [5] - 100:9, 100:21, 103:2, 111:2, 151:14
expensive [8] - 101:8, 102:5, 111:1, 116:19, 119:16, 133:5, 261:24, 272:23
experience [17] -

12:23, 13:4, 27:16, 53:10, 122:24,
129:12, 130:2,
149:5, 181:14,
182:1, 207:8,
215:14, 218:14,
223:2, 223:20,
225:18, 269:6
experienced [6] -
26:23, 129:18,
182:4, 183:1, 223:3, 267:21
experiences [1] 117:4
expert [13]-7:4, 9:17, 42:19, 149:6, 149:8, 150:10, 152:21, 155:6, 157:2, 180:7,
183:2, 255:3, 255:10
expertise [11]-9:19,
18:8, 88:2, 131:5,
150:4, 150:9,
158:19, 209:20,
214:15, 223:25, 242:4
experts [3]-47:14, 98:2, 223:3
explain [5]-13:21, \(14: 13,18: 1,21: 25\), 140:20
explained [1] - 131:2
explains [1] - 204:4
explanation [1] - 9:20
exploration [2]-32:4, 237:2
exploratory [1] - 31:22
explored [1] - 27:4
exploring [1] - 273:20
explosions [1] -
120:14
exposed [3] - 100:1,
135:5, 221:3
exposure [1] - 220:14
expound [1] - 105:20
extend [1] - 207:4
extending [1] - 119:25
extends [2]-86:18, 119:8
extensive [2] - 23:20,
99:6
extensively [1] - 16:9
extent [9]-34:10,
62:4, 63:2, 63:4,
158:22, 158:24,
159:2, 166:7, 272:15
extra [5] - 193:18,
193:23, 194:22,
194:25, 228:25
extraordinary [1] -
109:14
extreme [1] - 133:6
extremely [1] - 202:23
extremes [1] - 223:23
eyes [3] - 128:19,
128:24, 232:20
F
facilities [7]-102:17,
157:3, 157:5, 157:9,
177:1, 213:16, 227:1
facility [16]-141:7,
141:9, 141:16,
142:15, 142:16,
143:14, 158:7,
159:15, 163:6,
173:22, 194:7,
195:15, 195:20,
196:14, 213:14,
217:19
fact [15] - 45:9, 67:5, 95:24, 96:16, 100:10, 106:25, 125:24, 127:3, 134:4, 158:13, 176:25, 177:9, 235:5, 240:3, 260:25
factor \([44]-10: 12\), 14:19, 16:21, 30:13, 54:21, 73:3, 73:22, 75:22, 78:6, 78:14, 78:15, 84:12, 90:3, 90:5, 99:3, 105:11, 106:8, 106:10, 107:3, 107:11, 107:13, 107:16, 107:19, 109:13, 112:8, 113:23, 115:14, 116:15, 142:24, 143:8, 171:10, 176:21, 176:23, 185:16, 187:7, 187:25, 192:20, 192:23, 199:20, 200:6, 200:12, 235:15, 235:21, 256:12
factors [16] - 62:5, 70:25, 78:8, 86:23, 112:8, 112:15, 114:11, 116:23, 116:24, 116:25, 117:5, 136:19,
160:19, 170:2,
179:1, 193:25
facts [3]-20:25, 94:8, 257:24
faculty [2] - 158:7, 159:21
fail [9]-107:11,

107:21, 119:11, 207:17, 210:8, 213:19, 214:4, 214:17, 215:13 failed \(\left.{ }^{2}\right]\) - 215:11, 253:11
fails [2] - 119:9, 215:3
failure [14]-62:19, 79:9, 79:19, 79:24, 80:3, 80:4, 89:13, 90:19, 107:17, 107:25, 126:20, 130:19, 213:20, 217:8
failures [6]-86:24, 91:7, 91:8, 126:21, 214:6, 214:13
Fair \({ }_{[1]}-1: 4\)
fair [6] - 79:7, 79:17, 79:24, 86:20, 98:14, 207:7
fairly \([3]\) - \(78: 24\),
197:22, 245:22
falling [2] - 135:16, 176:7
falls [2]-119:2, 268:22
familiar [10]-13:15, 48:17, 49:5, 49:12, 100:6, 108:2, 110:3, 122:25, 151:17, 183:3
family [1]-17:9
far [51]-19:3, 25:21, 32:17, 32:18, 33:25, 37:4, 37:7, 57:9, 85:10, 85:14, 87:3, 90:5, 95:5, 99:9, 104:15, 119:23, 125:24, 126:24, 140:3, 140:6, 142:12, 143:20, 151:3, 151:4, 153:17, 154:21, 160:10, 160:12, 183:18, 184:11, 188:24, 189:21, 205:5, 209:12, 210:2, 211:5, 211:11, 211:23, 212:18, 213:10, 214:6, 227:22, 231:20, 243:12, 251:22, 252:2, 255:13, 256:19, 259:21, 270:3, 271:9
farm [1]-216:12
farmland \({ }_{[1]}-168: 25\)
fashion [3]-117:8, 210:21, 234:3
feasibility \({ }_{[1]}\) - 248:4
feasible [1]-19:8
federal [1] - 164:21
feedback [3]-124:20, 271:7, 272:4
fees [3]-228:13, 228:15, 228:22
feet \([40]-23: 4,33: 6\), \(33: 7,33: 8,65: 10\), 65:11, 65:14, 65:15, 88:9, 88:15, 110:6, 111:14, 115:20, 137:1, 137:2, 156:24, 157:1, 172:19, 172:20, 173:13, 173:21, 186:18, 202:25, 203:7, 203:14, 203:23, 231:23, 231:24, 232:2, 232:3, 232:16, 232:17, 232:19, 232:21, 232:23, 232:25, 233:1, 247:15, 268:8 few [5] - 64:10, 133:23, 149:9, 165:1, 184:1
fewer [3]-161:12, 179:25
field [17] - 9:19, 36:5, 81:15, 81:21, 126:10, 139:21, 163:17, 163:23, 166:20, 166:21, 168:20, 180:13, 180:14, 191:17, 191:18, 209:11, 223:3
fields [5] - 161:18, 190:19, 197:21, 212:21, 262:15
fifty \(\left.{ }^{11}\right]-238: 10\)
figure \([7]-32: 25\), 36:8, 83:1, 136:5, 149:18, 193:11, 241:20
filed [1] - 202:20
fill [68]-22:6, 22:7, 22:8, 40:15, 54:9, 81:7, 82:8, 82:10, 82:11, 83:13, 84:1, 85:15, 110:14, 112:11, 112:12, 112:18, 112:22, 113:10, 113:12, 113:24, 114:22, 114:24, 115:1, 116:4, 116:20, 119:19, 120:20,

122:16, 125:10,
125:11, 130:1,
134:5, 134:15,
135:1, 149:15,
151:10, 176:19,
176:20, 177:18,
178:16, 179:2,
187:14, 187:19,
187:24, 200:24,
204:15, 219:10,
219:16, 222:14,
225:19, 225:20,
225:22, 225:23,
226:1, 239:4,
240:12, 242:2,
243:9, 263:1, 263:5,
263:8, 263:10,
263:13, 263:24,
264:2, 264:4
filled [3] - 87:23,
162:18, 227:4
filling [7] - 134:19,
163:4, 163:5,
219:19, 222:5,
242:9, 252:17
filter [2] - 141:1, 141:5
final [22]-29:21,
33:13, 34:4, 34:9,
55:20, 56:5, 56:6,
56:22, 57:7, 57:20,
81:17, 98:5, 98:6,
99:10, 115:14,
115:15, 125:14,
172:17, 180:19,
233:11, 233:20,
256:18
finalized [2]-54:2, 97:6
finally \([4]-56: 5,62: 2\),
191:8, 252:13
financial [1] - 236:23
financially \({ }_{[1]}-220: 17\)
findings \([6]-43: 24\),
44:7, 58:2, 58:6,
94:10, 171:19
fine \([11]-6: 12,8: 14\), 9:11, 11:21, 58:21, 76:16, 104:2, 169:17, 189:10, 193:5, 224:8
finger \({ }_{[1]}-18: 21\)
fingers [1] - 149:16
finish [1] - 172:17
finished \([1]\) - 57:23
fires [1] - 120:14
firm [3]-9:23, 108:21, 108:23
first [27]-12:10,
20:19, 21:5, 27:22,
43:15, 47:17, 60:10,

76:22, 77:22, 85:20, flow [1]-195:14
106:3, 106:8, 109:6, flowing [1]-255:24
117:11, 121:7, fly [5]-136:13,
126:8, 147:19,
170:6, 175:4,
182:16, 192:6,
207:2, 207:20,
230:19, 232:3,
264:9, 274:6
fit [1] - 160:17
five [9]-107:11,
135:8, 137:2,
156:24, 168:18,
193:24, 195:3,
248:21, 267:3
five-to-one [1] - 135:8
fix [13]-92:4, 95:17,
109:11, 109:12,
109:15, 109:16,
109:18, 178:19,
213:6, 213:8,
228:17, 228:23, 260:12
fixing [2] - 40:25, 97:19
flag [1]-231:2
flanks [1]-135:14
flat [13]-102:14,
108:12, 122:10,
161:18, 185:7,
190:7, 197:19,
197:20, 197:22,
198:3, 200:14,
200:15, 263:24
flatter [6] - 132:23,
135:6, 187:11,
199:15, 200:19, 238:20
flew [1] - 138:11
flood [29]-15:4,
132:24, 141:11,
146:6, 162:14,
162:15, 162:16,
162:25, 163:1,
163:6, 163:12,
163:13, 163:15,
193:20, 196:9,
218:21, 218:23,
218:24, 219:8,
219:23, 221:18,
222:16, 222:23,
224:21, 225:15,
225:25, 226:5,
267:22
flooded [2] - 254:2, 267:24
flooding [1] - 95:10
floods [1] - 196:7
floodway [1] - 225:15
Floor [1]-3:11

138:10, 138:15, 140:15, 253:10
flying [1] - 137:8
folks [1] - 31:17
follow [10]-18:20,
106:19, 120:18,
175:10, 180:16,
182:22, 182:24,
184:1, 224:20,
274:24
follow-up [2] - 175:10, 180:16
followed [1] - 182:13
following [2] - 64:16,
182:23
follows [9]-12:11, 47:18, 60:11, 73:11, 77:23, 85:21, 106:4, 121:8, 175:5
foot [12]-110:13,
111:12, 115:21,
138:16, 152:4,
172:12, 185:19,
225:10, 264:25,
265:1, 265:5, 265:8
football [3]-162:12, 215:19, 221:5
footer [1]-201:5
footings [1] - 156:23
footprint \([4]-55: 21\),
56:22, 262:21,
264:10
force [2]-43:25, 205:14
forces [8]-78:9, 78:10, 78:12, 78:13, 78:17, 107:17, 107:18, 126:23
forecasting [1] 267:11
forefathers [2] -
153:5, 153:15
forensic [1]-214:16
forensically [1] - 49:2
forethought [3]-30:7,
30:8, 30:16
form [3]-129:24, 243:21, 244:21
formation [4]-21:10, 22:3, 79:19, 79:20
formations [1] - 79:14
Fort [1]-2:20
forth [13]-20:25,
84:4, 126:8, 127:5,
139:2, 151:14,
153:5, 178:16,
187:24, 200:18,
\begin{tabular}{|c|c|c|c|c|}
\hline \[
210: 3,210: 9,241: 12
\] & garbage [1]-227:4 & \[
\begin{aligned}
& \text { 129:22, 132:21, } \\
& \text { 140:2, 147:12, }
\end{aligned}
\] & \[
\begin{aligned}
& 255: 1,257: 8,258: 8 \\
& 262: 19,262: 23
\end{aligned}
\] & \[
14: 22,23: 1,45: 22,
\] \\
\hline foundation [16]-36:4, & 211:12, 211:16, & 152:13, 154:21, & gifted [1] - 236:8 & 87:7, 242:22, \\
\hline 39:14, 39:22, 40:8, & 212:4, 212:15, & 160:2, 160:25, & given [22]-6:16, 14:8, & 245:25, 253:16 \\
\hline 40:20, 55:22, 91:11, & 212:22, 213:4, & 167:21, 169:10, & 21:22, 23:24, 24:1, & gray [1]-243:23 \\
\hline 112:12, 116:20, & 213:15, 214:14, & 169:14, 170:3, & 37:10, 38:8, 64:21, & greases [1] - 141:4 \\
\hline 119:8, 119:21, & 215:5, 215:21, & 176:25, 201:10, & 71:12, 92:5, 103:12, & great [4]-24:21, \\
\hline 158:20, 182:7, & 215:23, 216:3, & 209:21, 210:1, & 139:10, 139:25, & 65:25, 75:11, 212:22 \\
\hline 187:19, 260:4 & 216:14, 217:3, & 210:12, 210:19, & 152:22, 156:17, & greater \({ }_{[7]}-78: 15\), \\
\hline foundations [3] - & 218:6, 218:11, & 211:3, 224:21, & 157:7, 158:13, & 107:18, 151:13, \\
\hline 133:5, 151:13, & 219:1, 219:5, & 233:17, 235:12, & 191:21, 203:24, & 151:20, 186:11, \\
\hline 192:13 & 219:17, 219:22 & 263:3, 264:15, 266:2 & 236:19, 242:5, 271:9 & 198:12, 198:15 \\
\hline founded [1] - 156:22 & 220:5, 220:9, & Geoff's [1] - 46:24 & global [1] - 106:9 & greatly [2]-17:3, 61:2 \\
\hline four [11] -9:8, 60:23, & 220:24, 221:3, & Geoffrey [1]-12:17 & Goehring [1] - 2:14 & grid [2]-136:14, \\
\hline 88:8, 88:14, 135:7, & 222:6, 222:11, & GEOFFREY [5] - 4:4, & gotcha [2]-176:9, & 136:16 \\
\hline 178:25, 183:17, & 222:14, 222:18, & 12:9, 60:9, 85:19, & 181:10 & ground [41]-22:3, \\
\hline 193:21, 194:20, & 224:6, 224:9, 224:18 & 121:6 & government [3] - & 26:15, 30:25, 40:13, \\
\hline 204:22 & Garber [2] - 4:17, & geologic [4]-22:3, & 95:18, 128:17, & 64:20, 67:17, 75:17, \\
\hline four-to-one [1] - 135:7 & 206:9 & 88:24, 160:10, & 164:21 & 75:19, 77:13, 81:1, \\
\hline fox [1]-124:11 & gardens [1] - 141:2 & 170:20 & governments [1] - & 81:5, 81:13, 81:19, \\
\hline fractures [1]-72:19 & Garvin [3] - 13:9, & geological \({ }_{[1]}\) - 46:1 & 164:22 & 81:22, 81:23, 82:1, \\
\hline fragile \({ }_{[1]}\) - 220:13 & 44:11, 48:1 & geologically [2] - & grab [2]-71:7, 71:8 & 82:25, 83:3, 113:15, \\
\hline fragments [2]-171:6, & garvin [1]-46:21 & 46:4, 50:10 & grade [5] - 115:15, & 117:18, 118:2, \\
\hline 242:25 & gas [5] - 105:14, & geologist \({ }_{[1]}-127: 19\) & 115:18, 115:22, & 118:4, 132:23, \\
\hline Frank [1]-47:24 & 120:9, 120:23, & geology [6]-32:13, & 196:18, 263:24 & 135:4, 136:15, \\
\hline frank [1] - 160:20 & 121:14, 123:2 & 51:11, 69:10, 70:2, & graders [1]-65:25 & 136:23, 138:15, \\
\hline frankly [2]-109:9, & gates [2]-229:10, & 160:11, 249:6 & grades [1] - 187:11 & 138:16, 141:1, \\
\hline 182:17 & 229:16 & Georgetowne [1] - & gradient [2]-144:10, & 143:25, 144:2, \\
\hline free [1]-92:5 & Gates [2]-3:5, 3:6 & 2:15 & 178:10 & 149:4, 162:10, \\
\hline freedom [1]-217:14 & GATESMAN \({ }^{\text {[8] }}\) - & geotech [6]-10:9, & grading [16]-14:3, & 169:6, 172:17, \\
\hline Freedom [1] - 168:15 & 183:19, 183:25, & 18:9, 38:6, 42:19, & 56:5, 57:20, 88:10, & 218:18, 241:3, \\
\hline freeze [1] - 73:2 & 188:2, 200:8, & 102:11 & 88:12, 93:9, 102:13, & 250:9, 266:6 \\
\hline French [2] - 240:22, & \[
\begin{aligned}
& 200: 21,201: 2, \\
& 201: 11,202: 2
\end{aligned}
\] & \[
\begin{aligned}
& \text { geotechnical [66] - } \\
& 13: 25,14: 25,29: 21,
\end{aligned}
\] & 102:16, 102:21, & \begin{tabular}{l}
group [1] - 174:9 \\
grow [4]-265:8,
\end{tabular} \\
\hline frequency & Gatesman [2]-4:10, & 31:4, 47:3, 48:10, & \[
\begin{aligned}
& 151: 18,197: 3, \\
& \text { 197:5, 212:13, }
\end{aligned}
\] & \[
265: 22,274: 4
\] \\
\hline \[
268: 22
\] & 183:19 & \[
48: 21,48: 22,52: 5,
\] & 237:16, 247:18, & 274:21 \\
\hline friday [1] - 1:6 & Gateway [3] - 22:20, & 52:8, 53:7, 54:24, & 271:5 & guarantee [4]-61:18, \\
\hline Friday [1] - 276:14 & 147:22, 156:18 & 59:1, 69:20, 77:13, & gradual [2]-253:7, & 61:23, 74:20, 265:14 \\
\hline front [6] - 83:8, & gathers [1] - 86:5 & 78:4, 82:23, 84:15, & 253:8 & guard [1]-253:18 \\
\hline 126:11, 149:10, & gauge [1]-268:2 & 85:1, 94:12, 106:12, & GRAMC [21]-2:14, & guess [6] - 170:2, \\
\hline 149:17, 167:9, & gears [2]-128:5, & 106:15, 106:18, & 7:5, 7:10, 7:23, 8:2, & 192:5, 218:6, 218:7, \\
\hline 180:11 & 132:3 & 107:13, 108:21, & 9:10, 9:14, 9:20, & 249:23, 275:7 \\
\hline full [7]-55:6, 114:22, & general [5] - 10:23, & 108:23, 108:25, & 10:5, 11:3, 12:14, & guidance [1] - 152:16 \\
\hline 125:21, 127:20, & 33:3, 160:11, & 111:3, 114:18, & 13:6, 18:15, 18:18, & guidelines [1] - \\
\hline 142:23, 227:12, & 175:22, 177:15 & 114:20, 124:8, & 19:16, 43:6, 44:20, & 205:16 \\
\hline 227:19 & generalized [1] - & 125:14, 126:6, & 46:10, 174:25, & gully [1]-165:14 \\
\hline fully [4]-79:16, 124:4, & 272:5 & 128:8, 131:3, & 201:24, 266:14 & gunsmoke [1] - 137:7 \\
\hline 207:21, 211:12 & generally [5] - 14:24, & 131:12, 131:13, & Grame [3] - 4:5, 7:9, & guy \({ }_{[2]}\) - 167:3, \(252: 13\) \\
\hline functional \({ }_{[1]}\) - 202:22 & 45:24, 175:18, & 131:16, 131:25, & 42:17 & guys [4]-165:4, \\
\hline funding [1]-223:16 & 175:24, 177:20 & 138:24, 139:11, & Grant [1] - 3:11 & 165:15, 171:13, \\
\hline future [2] - 67:21, & generated [1] - 163:17 & 159:9, 159:14, & grants [2]-142:7, & 174:16 \\
\hline 157:10 & generates [1] - 180:15 & 160:16, 161:9, & 142:8 & \\
\hline & gentleman [1] - & 166:2, 167:16, & grapevine \({ }_{[1]}\) - 138:8 & H \\
\hline G & 225:11 & \[
\begin{aligned}
& \text { 170:10, 170:13, } \\
& \text { 170:17, 170:19, }
\end{aligned}
\] & graph [1]-118:15 & \\
\hline gallons [1] - 193:22 & 103:19, 206:4, & 181:6, 183:5, & \[
\begin{gathered}
\text { grass [2] } \\
274: 20
\end{gathered}
\] & \[
90: 5,90: 24,198: 8,
\] \\
\hline game [2]-24:25, 62:1 & 206:13, 270:11, & 202:15, 204:7, & grave [5]-99:15, & 198:23, 199:21, \\
\hline games [2]-221:6 & 276:11, 276:16 & 209:20, 216:16, & 99:17, 99:19, & 208:16 \\
\hline garage \([3]\) - 190:21, & Geoff [30]-7:12, 7:14, & 220:6, 223:25, & 100:20, 101:5 & halfway [1] - 229:17 \\
\hline 203:5, 203:6 & 17:20, 46:17, 81:7, & 241:10, 249:9, & gravity [11]-14:17, & halted [1] - 61:12 \\
\hline
\end{tabular}
hand \([4]-126: 25\),
\(127: 3,127: 6,183: 15\)
handle [4]-143:15, 193:19, 194:8, 195:24
handled [1] - \(31: 2\)
handling \({ }_{[1]}\) - 195:19
hands [2]-113:4, 183:16
hang [1] - 252:9
hanging [1] - 76:17
hard [14]-24:11,
24:19, 64:23, 65:18,
65:21, 65:22, 65:23,
72:2, 100:10, 113:1,
232:9, 244:23, 246:20, 274:4
harder [3] - 233:9, 233:19, 269:11
hardness [3]-24:18, 24:19, 98:17
hatched \([1]-212: 2\)
hate \({ }_{[2]}-108: 18\), 233:6
head [2]-71:11, 216:8
heads [2] - 125:2, 128:20
Health [1] - 157:15
health \([1]\) - \(274: 6\)
hear [6]-52:25,
148:3, 154:9,
159:10, 221:5, 221:8
heard [9]-80:21, 138:7, 250:10, 250:20, 251:17, 252:6, 259:25, 270:9, 270:21
Hearing [3] - 162:22,
162:24, 222:19
HEARING [3]-1:2, 2:4, 2:9
hearing [9] - \(6: 5,7: 24\), 8:4, 8:9, 9:17, 34:2, 79:7, 192:21, 251:19
hearsay [5] - 149:20,
150:3, 158:20, 181:25, 182:6
heart [1]-215:3
heaven's [1]-112:5
heavy [4]-121:23,
140:14, 155:18, 251:1
heck [1] - 225:9
height \([3]\) - 151:22, 163:20, 267:25
heights [1] - 195:6
Heights [8]-141:18, 164:17, 165:7, 194:6, 194:17, 194:18, 227:16,

270:1
held [1]-126:1
HELD [3]-68:20, 274:10, 276:24
hello \({ }_{[1]}\) - 164:5
help [10]-97:8, 100:2,
117:9, 123:15, 176:25, 178:2,
178:23, 210:16, 276:23
helpful \([2]-47: 10\), 98:14
helping [1] - 87:5
hence [2]-54:16,
56:15
hereby \({ }_{[1]}-278: 5\)
herein [1] - 278:7
High \([1]\) - 168:15
high \([37]-11: 4,14: 10\), 16:3, 16:25, 34:6, 86:17, 94:18, 107:4, 110:13, 112:14, 112:15, 133:14, 133:18, 154:5, 154:6, 162:10, 168:2, 170:9, 184:17, 184:20, 184:21, 185:1, 191:12, 191:14, 192:1, 192:5, 192:11, 192:17, 197:11, 197:16, 199:11, 217:17, 218:15, 219:18, 220:1, 221:13, 269:14
higher [11]-87:2, 90:14, 93:13, 116:15, 175:24, 196:8, 200:7, 225:24, 235:11, 242:21, 243:6
highway [8]-89:6, 142:1, 142:2, 142:24, 184:22, 196:3, 205:5, 211:19
highways [1] - 119:3
Hill [1] - 206:9 hill [28]-22:9, 70:20, 74:11, 82:6, 86:16, 104:14, 121:3, 133:16, 133:18, 134:20, 143:24, 165:22, 168:16, 168:17, 170:12, 170:22, 170:23, 204:15, 217:13, 217:15, 232:1, 239:18, 246:13, 251:5, 254:10,

254:14
hills [3]-69:22, 69:23, 147:23
hillside [27]-60:23, 67:7, 79:14, 79:18, 80:9, 82:6, 82:9, 83:12, 83:13, 83:24, 86:24, 86:25, 113:9, 133:22, 162:11, 239:6, 253:2, 255:13, 255:24, 270:13, 270:16, 270:24, 271:22, 272:13, 272:15, 272:24, 273:8
hillsides [8]-15:11, 82:12, 82:16, 84:5, 84:7, 117:16, 233:25, 234:23
hired \({ }^{10]}\) - 13:18, 23:20, 25:9, 37:9, 44:11, 47:5, 47:6, 140:21, 165:18, 191:3
historical \({ }_{[1]}-167: 2\) history [4]-24:1, 69:2, 77:13, 218:7
hit [5] - 41:5, 41:6, 113:11, 138:11, 269:11
hits [1] - 140:25
hitting \([1]-41: 21\)
hold \([7]-42: 15\),
141:9, 185:22,
194:21, 194:23,
195:1, 254:22
holding [1] - 194:24
holds [2] - 94:11, 95:8
hole [10]-28:8, 33:5, 86:10, 118:2, 136:18, 136:19, 168:20, 168:25, 169:17, 170:5
holes [6]-23:3, 32:14, 136:14, 136:17, 169:24, 171:14
home [7]-40:9,
40:21, 105:15, 167:2, 167:3, 167:8, 249:21
homeowner [1] -
260:3
homeowners [4] 64:10, 174:10, 186:23, 218:5
homes [12]-15:10, 26:7, 26:16, 26:19, 38:20, 39:5, 40:3,
148:5, 164:17,
165:1, 201:5, 226:4
hope \([2]-81: 24\),
\(210: 14\)
hopefully \([3]-18: 21\),
103:23, 169:8
hoping \([1]-247: 24\)
horizontal \([4]-\)
115:19, 115:20,
\(245: 18,245: 22\)
horizontally [3] - 73:5, 73:6, 235:18
horns [1]-221:9 horseshoe [1] 229:22
hospital [2]-214:24, 215:2
host \([1]-132: 14\)
hour [4]-103:22, 269:3, 269:4, 269:19 house [28]-22:21, 24:4, 40:15, 40:16, 41:15, 41:20, 41:21, 41:24, 88:7, 131:18, 166:20, 166:22, 168:1, 201:5, 201:6, 212:1, 229:14, 231:15, 231:16, 240:22, 240:23, 250:8, 253:5, 254:5, 255:13, 256:25, 257:4, 273:23
houses [27]-26:11,
40:11, 66:20, 74:1,
83:2, 87:9, 87:21,
87:22, 89:3, 89:5,
91:12, 91:19, 96:4,
140:17, 151:6,
151:9, 165:7,
184:13, 184:14,
184:18, 185:2,
185:3, 201:13,
217:25, 218:8,
257:11, 270:25
housing [3] - 148:17, 148:18, 214:24 huge [2]-140:4, 195:18
human [3]-127:9,
127:14, 127:17
humans [1] - 193:9
hundred [58]-23:4,
32:1, 32:9, 32:10, 33:10, 33:20, 36:7, 36:15, 37:14, 53:25, 55:13, 55:14, 64:12, 88:8, 88:15, 107:7, 107:9, 110:6, 136:3, 141:12, 141:13, 145:16, 145:20, 145:21, 145:22, 146:1, 146:4,

163:22, 171:13,
190:24, 193:20,
195:21, 195:22,
196:9, 225:21,
225:22, 232:13,
233:5, 253:23,
253:24, 256:20,
267:1, 267:4,
267:13, 267:16,
267:22, 268:3,
268:7, 268:12,
268:14, 268:18,
268:24, 269:13,
269:16, 275:5,
275:8, 275:15
hundreds [4]-58:23, 81:15, 104:13, 135:24
hunks [1] - 71:7
hurricane [2]-269:8, 269:9
Hyjek [2] - 4:11, 226:11
HYJEK [4] - 98:8, 226:10, 226:15, 230:23
\begin{tabular}{l}
I \\
\hline
\end{tabular}

I-79 [1] - 155:16
idea [9]-25:17, 26:21, 26:24, 32:7, 33:3, 56:20, 108:11,
136:25, 180:10
ideal \({ }_{[1]}-88: 1\)
identical \({ }_{[1]}-7: 22\)
identified \([7]\) - 17:6,
97:11, 101:5,
143:18, 154:3,
176:14, 188:8
identify [2]-244:22, 260:23
Ikea [2]-138:6, 138:22
imagine [2] - 168:9, 197:15
imminent [2]-62:10, 215:12
impact [23]-39:6, 39:8, 39:11, 39:19, 80:5, 92:23, 161:23, 206:17, 206:20, 207:18, 218:13, 220:6, 220:10, 220:18, 221:11, 221:14, 222:9, 234:23, 259:4,
262:23, 265:23,
271:1
impacted [6]-45:21,

89:7, 135:23,
140:18, 207:15, 213:13
impacting [1]-220:21
impacts [3] - 143:4,
158:16, 272:12
impervious [7] -
71:13, 73:7, 73:10,
144:4, 195:13, 198:21, 198:24
implemented [8] 37:3, 37:20, 117:6, 180:12, 181:3, 187:21, 208:13, 209:1
important [6]-10:11, 10:14, 53:6, 53:8, 126:10, 135:24
impossible [1] - 77:7 impractical [1] 110:21
improperly [2] 137:23, 138:2
improve [11] - 96:12, 97:8, 142:8, 143:21, 210:4, 210:12, 212:8, 212:12, 251:10, 258:6, 258:21
improved [1] - 189:17 improvements [7] -
97:4, 229:18, 229:19, 229:21,
229:22, 257:7,
272:16
improving [4] - 97:18, 176:21, 252:20, 257:3
impugning \({ }_{[1]}\) - 223:8
inappropriate [8] -
50:23, 51:22, 51:23,
51:25, 52:1, 52:3,
52:13, 109:21
inches [9]-114:16,
225:24, 268:23,
268:25, 269:2,
269:19, 274:19,
274:20, 275:3
incident \({ }_{[1]}\) - 92:18
inclinometer \({ }_{[1]}\) 117:25
include \([7]-63: 14\), 117:16, 196:18, 196:21, 241:24, 251:13, 256:13
included [5]-13:23,
14:11, 57:14, 125:18, 139:22
includes [2]-61:14, 181:3
including [8]-101:15, 113:6, 141:12, 158:3, 159:17, 209:14, 215:1, \(248: 5\)
incorporate [1] 168:1
incorrect [1]-144:14
increase [6]-90:9,
179:7, 195:12, 200:11, 219:8, 243:3
increased [4] 106:16, 199:25, 209:16, 209:17
increases [1]-123:9
increasing [3]-134:6, 135:15, 177:16 incremental \([1]\) - 86:9 incrementally \([7]\) 27:24, 28:1, 28:9, 28:13, 29:20, 29:25, 30:5
incurred \([3]\) - 178:1, 178:7, 179:25
INDEX [1] - 5:1
indicate [2]-21:8, 64:15
indicated \([7]-76: 24\),
102:25, 122:15, 197:6, 232:11, 234:18, 236:5 indicating [4]-99:16, 99:21, 100:8, 176:6 indicating) [14]18:25, 19:15, 136:24, 212:5, 212:7, 230:2, 231:13, 235:11, 239:16, 249:3, 249:21, 252:23, 273:5, 273:18
individual \({ }_{[1]}\)-92:2 individuals [1] 108:24
industrial \([7]-102: 19\), 155:13, 155:14, 155:16, 155:17, 155:18, 155:21
industry [1] - 14:24
inextricably \({ }_{[2]}\) 11:18, 11:23
inflating [1] - 224:11
information [14] 21:7, 36:4, 75:24,
76:19, 94:9, 94:14, 171:22, 171:23, 240:3, 249:7, 249:8, 249:9, 263:18, 263:20
infrastructure [1] 102:21
infrastructures \({ }_{[3]}\) 95:20, 95:23, 102:16 ingress [2] - 189:13, 216:23
ingress/egress [1] 217:1
initial [6] - 140:20,
175:15, 190:4,
192:3, 203:11,
221:20
injured \({ }_{[1]}-41: 4\)
injures \({ }_{[1]}\) - 41:1
Innamorato [2] - 4:11, 231:7
INNAMORATO \({ }_{[23]}\) -
231:6, 233:21,
233:23, 235:25,
236:2, 237:21, 238:2, 238:6, 238:8, 238:11, 238:17, 239:9, 239:10, 240:14, 240:21, 241:5, 241:14, 241:16, 243:16, 244:13, 245:4, 245:12, 246:23
input [1]-167:19
insert [1] - 118:5
inserted [2]-117:18, 118:3
inside [1]-250:7
inspected \({ }_{[1]}\) - 227:1
inspecting [3] -
108:25, 109:1, 126:2
inspection [5] -
128:24, 131:2,
180:17, 180:21, 223:18
inspections [3] 40:23, 92:8, 129:17
inspector [1] - 128:18
inspectors [1]-131:7
instability [2] -
176:12, 179:20
install [3]-81:14,
92:20, 92:21
installed \({ }_{[1]}\) - 121:19
instance [10]-26:24,
30:16, 34:19, 51:15,
53:21, 74:20,
132:13, 133:14, 185:17, 268:4
instances [5]-27:14,
107:7, 107:8,
122:25, 168:24
instead [6] - 45:1,
47:10, 135:6,
173:20, 247:18,
273:11
institute [1] - 185:25
institutional \({ }_{[1]}\) 17:10
instructed [1] - 160:3
instrument [2] -
118:6, 118:9
instruments [1] -
118:5
insurance [25]-26:10, 39:16, 40:22, 40:25, 41:3, 42:10, 44:12,
68:10, 68:12, 68:15,
91:13, 91:17, 92:2,
92:8, 92:17, 92:24,
93:19, 106:21,
163:13, 163:16,
182:18, 260:2,
260:9, 260:22
insure [1] - 106:21 insurmountable [1] 193:10
intend [7]-32:20,
83:12, 83:21, 234:1, 234:24, 237:15, 237:23
intends [1] - 6:17
intensity \({ }_{[1]}\) - 268:6
intent [4]-81:17, 137:5, 137:6, 140:20
intention [1]-215:8
intentions [1]-213:17
interested [1] - 181:11
interesting [1] -
145:14
interests [1] - 130:18
interject [3]-254:20,
257:13, 257:19
interjected [1] -
257:20
internet [1]-68:25
interpretation [1] -
202:12
interrupt \([4]\) - 18:13,
158:25, 160:25
intertwined [2] 11:19, 11:24
intervals [1]-118:9
intimately \({ }_{[1]}\)-130:24
introduce [1]-43:20
investigated [1] -
184:3
investigating \({ }_{[1]}\) 151:4
investigative \({ }_{[1]}\) -
143:17
involve \([3]\) - 15:22, 35:2, 176:19
involved [27]-13:12,
13:17, 13:22, 22:11, 44:13, 53:8, 58:8, 59:11, 123:5,

130:24, 137:12,
138:5, 155:16,
156:21, 161:20,
166:5, 167:23,
170:17, 180:7,
192:20, 193:25,
196:11, 210:15,
223:9, 237:14,
239:24, 260:18
involvement [1]-24:2
involves [1] - 89:9
involving [4]-43:8,
63:9, 94:23, 179:24
irrelevant [1] - 149:21
ish [1] - 198:14
isolated [2]-81:2,
217:18
issue [19]-41:3, 46:5, 85:6, 96:15, 99:4,
154:24, 161:1,
182:2, 193:6, 195:7,
217:7, 218:20,
219:23, 220:9,
221:19, 222:25,
224:21, 258:14
issues [26] - 8:11,
21:16, 21:22, 22:16,
23:6, 23:24, 30:21,
77:13, 81:23, 88:24,
95:4, 95:9, 95:12,
101:12, 101:13,
147:18, 161:2,
161:14, 162:9,
177:24, 178:9,
180:1, 192:14,
207:17, 220:2, 255:1
items [2]-94:11,
254:21
itself [3]-55:19, 73:9,
137:16
\begin{tabular}{l}
\hline J \\
\hline Janet \([1]-231: 7\) \\
January \([1]-61: 8{ }^{\text {JASPER }[6]-249: 14,}\) \\
249:20, 255:2, \\
255:9, 256:5, 258:16 \\
Jasper \([4]-4: 12\), \\
249:13, 254:24, \\
261:23 \\
Jasper's \([2]-261: 5\), \\
264:13 \\
jeopardy \([1]-217: 6\) \\
job \([1]-105: 3\) \\
Joe \([31]-7: 13,7: 14\), \\
13:12, 14:15, 44:15, \\
44:16, 44:17, 45:3, \\
46:17, 47:22, 48:3, \\
85:1, 86:5, 93:12,
\end{tabular}
\(105: 22,111: 19\),
\(122: 15,123: 6\),
\(126: 13,129: 3\),
\(130: 25,138: 21\),
\(139: 3,143: 10\),
\(144: 20,147: 15\),
\(148: 22,159: 10\),
\(161: 19,171: 17\),
\(211: 23\)

John [4]-141:14, 193:16, 197:6, \(234: 9\) join [1] - 12:5 joint [2] - 169:15, 205:14
JOINTLY [1] - 7:1
Jordan [1] - 206:9
JOSEPH [5] - 4:14,
47:16, 77:21, 106:2, 175:3
Joseph [1] - 47:24
judgment [1] - 267:7
June [2] - 20:22, 44:1
junk [2] - 70:13, 70:23
jurisdiction [1] - 95:3
justification [1] -
203:10
K
K\&L [2] - 3:5, 3:6
karstik [1] - 169:23
keep [21]-14:15,
18:10, 34:24, 50:3,
52:5, 75:15, 85:8,
85:9, 85:13, 108:17,
112:22, 113:5,
149:15, 214:11,
223:11, 240:11,
\(247: 10,252: 5\),
\(270: 6,270: 17,272: 3\)
keeping [3]-113:14, 209:10, 234:4
kibosh [1] - 212:23
kids [5] - 104:13, 123:24, 124:15, 158:6, 192:22 Kilbuck [35] - 5:6, 43:8, 43:23, 44:1, 45:7, 48:14, 49:13, 49:16, 49:20, 50:2, 50:9, 50:15, 50:21, 50:25, 51:7, 51:13, 51:19, 58:5, 58:8, 59:18, 60:20, 61:23, 63:1, 88:18, 89:14, 89:18, 89:19, 90:13, 90:20, 108:3,
124:10, 131:3, 204:22, 252:21, 271:2

Kim [1] - 183:19
Kimball [1] - 59:10
kind [31] - 15:9, 17:4, 22:4, 22:5, 41:17, 59:6, 77:1, 78:25, 83:15, 100:19, 127:14, 129:19, 153:21, 154:1, 155:4, 165:18, 166:15, 174:15, 192:13, 198:2, 198:5, 204:25, 219:2, 220:6, 244:15, 250:8, 250:14, 251:9, 262:3, 263:16, 271:4
knife [1] - 246:17
knowing [3] - 109:19, 153:1, 216:16
knowledge [3] 20:24, 99:2, 108:19
known [1] - 77:8
knows [3] - 25:21, 188:22, 235:13
KOVACS [3] - 173:5,
173:23, 174:3
Kovacs [2] - 2:6, 4:10
Kramer [1] - 2:19
L
I7th [1] - 276:15
lab [1] - 115:4
labeled [1] - 69:8
laboratory [2] -
127:25, 243:2
lack [2] - 158:19,
182:6
ladies [2] - 103:18, 276:11
lady [1] - 250:6
laid [2] - 245:16,
245:22
Lake [1] - 72:21
lake [1] - 72:22
land [20]-11:1, 11:4, 34:3, 132:16,
152:16, 154:23, 154:24, 155:7, 161:3, 162:7, 162:8, 162:24, 206:16, 206:21, 214:21, 220:12, 221:21, 221:22, 234:19, 250:17
landslide [76] - 21:10, 21:15, 43:23, 44:1, 45:8, 48:14, 48:17,
48:20, 49:5, 49:14,
49:16, 49:21, 50:9,

50:16, 50:21, 51:1, 51:7, 51:13, 51:19, 58:6, 58:16, 58:19, 58:23, 59:3, 59:17, 60:19, 61:24, 62:25, 63:1, 63:3, 63:6, 68:22, 69:8, 69:12, 69:17, 77:8, 80:11, 80:13, 86:22, 88:18, 89:3, 89:14, 89:18, 101:6, 104:14, 104:17, 104:23, 106:13, 107:7, 107:12, 109:3, 109:17, 110:9, 110:14, 110:15, 110:16, 111:16, 111:22, 112:9, 117:2, 117:7, 119:6, 120:13, 121:13, 122:4, 133:25, 134:2, 162:9, 166:8, 220:15, 232:8, 240:5, 246:3, 246:5, 246:6, 251:7
landslide-prone [1] 21:10
landslides [23]-52:6,
52:23, 53:4, 69:2,
80:7, 80:8, 117:10,
118:21, 118:25, 132:9, 135:16, 137:17, 137:19, 137:24, 138:2, 149:7, 150:11, 161:12, 161:13, 178:12, 246:1, 246:10
landsliding [1] 262:19
lane [3]-60:23, 220:13, 228:25
large [10]-28:21, 28:22, 85:10, 103:11, 128:13, 196:14, 223:15, 231:22, 232:4, 260:18
largely [1] - 174:11
larger [4]-69:13,
161:16, 203:20, 274:2
last [8]-59:22, 61:7, 123:4, 145:23, 179:21, 224:7, 249:15, 267:3
late [3]-20:6, 109:5, 164:24
law [1] - 130:9
laws [1] - 93:22
lawyer [2] - 66:17, 105:4
lawyers [3] - 43:20, 105:3, 183:10 lay [3] - 78:23, 171:5, 187:17
layer [17] - 15:18, 64:22, 65:10, 66:7, 66:21, 71:17, 71:22, 72:8, 73:4, 73:17, 73:18, 114:15, 114:16, 128:23, 144:4, 144:5
layers [13] - 72:11, 72:23, 113:24, 114:1, 114:4, 114:14, 114:15, 140:10, 140:12, 140:13, 245:19
laying [2] - 132:12, 187:11
layman [1] - 250:3
layman's [1] - 269:18
layout [4] - 148:25,
149:3, 191:14, 264:6
layouts [2] - 191:4, 263:3
leaette [1] - 1:23
Leaette [1] - 278:15
learned [3] - 130:20,
130:21, 241:10
least [15] - 14:6,
16:21, 30:12, 60:3,
64:12, 90:4, 90:23,
98:15, 130:2,
132:18, 149:3,
178:4, 195:4,
210:10, 257:8
leave [7]-7:16, 92:23,
123:12, 201:6,
201:8, 272:25
leaves [1] - 227:5
leaving [3]-135:4, 178:20, 242:12
led [1] - 184:2
Leet [29] - 6:5, 15:7,
43:10, 69:6, 69:7,
69:16, 90:7, 94:23,
97:13, 133:9,
157:12, 157:20,
157:25, 158:4,
158:9, 159:19,
159:24, 161:6,
161:7, 161:24,
184:9, 197:17,
198:2, 198:14,
206:18, 228:8,
248:10, 267:2
LEET [2] - 1:1, 2:4
Leet-ish [1] - 198:14

Leetsdale [19] - 69:6, 69:15, 69:16, 80:1, 80:17, 82:7, 88:14, 93:3, 94:24, 95:10, 97:13, 97:16, 133:10, 141:25, 165:6, 197:25, 253:22, 254:7, 270:15
LEETSDALE [1] - 2:17
left [3]-183:18, 194:6, 252:15
legal [11] - 34:11, 38:4, 46:18, 123:23, 130:9, 130:13, 154:11, 154:18, 158:23, 189:6, 201:23
length [1] - 151:22
less [20]-14:21, 16:19, 84:12, 123:8, 127:3, 132:7, 150:25, 161:12, 176:8, 184:15, 184:16, 185:3, 198:15, 198:17, 199:25, 200:19, 207:9, 233:18, 238:1, 247:25
lesser [1] - 151:20
letter [4] - 9:8, 45:5,
131:21, 139:14
letters [1] - 224:2
letting [1] - 35:3
level \([16]-34: 8,62: 15\),
64:24, 77:17, 90:21,
92:16, 92:17, 93:13,
129:15, 146:8,
162:13, 162:20,
163:16, 186:13,
203:16, 269:23
leveled [1] - 166:21
levels [3]-39:21,
132:16, 196:8
liability [1] - 182:18
licensed [2] - 12:21, 13:1
life [7]-41:25, 42:2,
42:7, 42:8, 42:10,
42:11, 240:19
lift [2]-138:15, 138:16
lifts [2] - 113:25,
114:23
light [2]-89:25,
155:17
likelihood [5] - 90:14,
107:6, 161:12,
233:4, 234:22
likely [2] - 40:2, 170:3
limestone [2] -

169:24, 169:25
limit [2]-83:9, 132:15
limitations [1] -
200:13
limited [3] - 134:9, 202:23, 235:2
limits [1] - 115:10
line [9]-18:20, 96:1, 96:5, 159:3, 169:15, 170:4, 181:22, 227:22, 227:24
linear [1] - 220:14
lines [17]-120:9,
120:10, 120:12,
121:24, 121:25,
122:1, 122:5,
122:12, 122:13,
122:17, 123:1,
123:2, 152:3,
227:15, 227:16, 250:2
list [2]-111:19, 111:21
listen [1] - 259:21
literally [2] - 58:9, 58:22
live [14]-31:11, 31:17, 33:17, 39:14, 40:18, 164:5, 198:9, 206:9, 206:19, 207:10,
212:4, 214:22,
221:12, 253:6
lived [1] - 153:15
lives [4]-39:9, 41:2,
221:16, 276:17
living [2] - 253:1, 254:15
LLP [1] - 3:5
load [2] - 116:10, 211:7
loaded [1] - 211:12
loading [1] - 211:20
loads [2] - 209:25, 211:21
local [1] - 229:15
locale [2] - 106:12, 106:15
locally [1] - 222:7
located [12] - 19:7,
32:1, 33:5, 37:15,
80:1, 80:17, 87:9,
159:22, 202:7,
202:24, 204:20,
254:5
Iocation [11] - 86:22,
87:17, 88:20, 89:8,
143:6, 184:18,
191:25, 215:6,
229:13, 231:16, 267:22
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& \text { locations [2] - 189:22, } \\
& \text { 202:6 }
\end{aligned}
\] \\
\hline & lodged [1] - 181:22 \\
\hline & \[
\begin{aligned}
& \text { logs }[2]-128: 1, \\
& 244: 18
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \text { look [42] - 16:13, 21:5, } \\
& \text { 27:21, 34:6, 49:1, } \\
& \text { 54:9, 54:21, 58:25, } \\
& \text { 61:7, 72:21, 78:7, } \\
& \text { 97:18, 100:6, 118:1, } \\
& \text { 120:17, 127:9, } \\
& \text { 127:25, 128:2, } \\
& \text { 130:17, 151:23, } \\
& \text { 155:7, 157:19, } \\
& \text { 157:25, 160:1, } \\
& \text { 160:3, 161:24, } \\
& \text { 162:2, 162:23, } \\
& 166: 1,167: 25,
\end{aligned}
\] \\
\hline
\end{tabular}

49:4, 59:22, 60:3,
157:14, 160:4,
160:16, 161:15,
161:23, 163:13,
192:3, 193:3, 203:13, 203:19, 217:22, 224:3, 224:4, 248:10, 248:11
looking [14] - 56:14,
70:15, 87:15, 88:6,
100:5, 103:2,
130:10, 161:11,
179:15, 192:24,
197:15, 248:3,
255:2, 263:3
looks [2] - 16:13,
170:11
loop [2] - 96:6, 229:21
looped [2] - 95:24, 227:21
loose [2] - 113:25,
258:23
loosening [1] - 207:5
lose [4] - 143:2,
199:22, 200:19, 244:10
loss [1] - 89:9
lost [1] - 42:10
LOU [1] - 3:10
Lou [2] - 43:1, 43:15
louder [1] - 68:18
love [1] - 272:2
low [4]-86:18, 133:2,
195:3, 220:15

\(\frac{\mathbf{M}}{\text { ma'am [4] - 183:18, }}\)

Iower [16] - 14:18, 45:23, 132:12, 132:16, 134:19, 62:13, 162:25 , 163.3, 197:10, 222:4 229:7, 229:11, 246:15
lowered [1] - 231:17 231:20
lowers [1] - 163:6
lowest [5] - 16:9, 86:4
87:19, \(107: 3\)

202:13
unch [4] - 103:20, 174:22
LUNCHEON [1] 147:5
ma'am [4] - 183:18,
233:2, 248:6, 266:21
Macedonia [1] -
147:23
machine [1] - 25:4
machinery [1] - 251:1
machines [2] - 24:20, 24:22
magnitude [3]-80:3, 136:1, 179:19
Main [1] - 3:16
main [9]-96:20,
116:1, 142:24,
215:2, 215:18,
216:11, 217:1,
242:17
maintain [4] - 96:9, 185:20, 226:18, 226:19
maintained [1] 226:20
maintenance [1] 227:10
major [8] - 96:18,
100:21, 132:25,
179:1, 216:1, 227:2,
239:20, 270:24
majority [3]-202:24, 233:9, 271:24
makeup [2]-65:20, 173:10
malleable [1] - 24:13
man [1] - 145:15
manage [3] - 120:11, 146:16, 265:25
management \({ }^{[1]}\) -
226:23
managing \({ }_{[1]}-266: 2\)
manmade [3] - 74:6,
87:24, 202:13
manner [2]-46:11, 86:10
mantel [6] - 79:21,
81:4, 119:1, 119:9,
121:19, 177:9
manual [1] - 205:18
manuals [1] - 199:7
map [2] - 66:15, 202:4
maple [1]-265:5
maples [2]-264:25,
265:1
mapping [2] - 133:8,
163:15
maps [1]-238:13
March [1] - 99:20
margin [5] - 126:15, 126:18, 127:7,
144:12, 144:13
mark [3]-42:24, 43:3,
101:8
marked [1]-43:1
maroon [1]-243:22
mass [1]-77:8
massive [2]-60:19, 232:9
material [59]-15:1,
15:16, 15:17, 15:19,
15:20, 16:11, 16:16,
22:5, 22:6, 22:7,
22:8, 22:10, 23:1,
24:5, 29:13, 29:17,
55:16, 63:10, 69:11,
70:23, 73:9, 79:22,
81:9, 86:5, 86:7,
111:14, 111:17,
111:18, 112:9,
112:10, 112:14,
112:19, 115:2,
116:20, 120:21,
122:8, 122:19,
122:21, 134:16,
136:20, 140:15,
151:10, 185:20,
185:22, 199:21,
227:9, 232:19,
242:11, 242:12,
242:15, 243:8,
243:21, 244:18,
244:22, 246:14,
246:18, 250:16
materials [8]-17:14,
53:15, 53:18, 84:3,
112:19, 149:12,
213:17, 243:5
matter [6] - 91:20,

93:14, 106:25,
133:11, 133:14, 160:6
matters [4]-123:18,
123:21, 152:18
mature [1] - 272:8
\(\max [3]\) - 198:21,
211:9, 253:10
maximally \({ }_{[1]}-138: 20\)
McKeesport [2] -
147:22, 156:20
mean [36]-28:2, 39:2,
41:12, 58:7, 62:9,
78:18, 80:2, 83:23,
96:17, 98:10, 98:14,
101:23, 103:8,
107:21, 115:2,
127:16, 145:9,
151:22, 151:25,
156:8, 167:16,
176:4, 182:16,
189:7, 217:12,
225:22, 236:13,
236:20, 242:13,
243:18, 250:5,
259:23, 264:8,
268:11, 272:18, 275:19
meaning [13]-75:23,
90:24, 92:19, 93:17,
100:9, 124:15,
140:25, 161:21,
171:15, 171:16,
190:18, 206:18,
220:24
means [9]-70:13,
78:16, 87:16, 96:6,
139:18, 154:4,
199:20, 216:23,
231:18
meant [4]-154:23,
163:2, 219:1, 263:24
measure [2]-118:21, 267:25
measurements \({ }_{[1]}\) 130:20
measures [17]-37:2,
37:17, 37:20, 67:18, 84:14, 84:18,
109:14, 110:23,
111:6, 111:16,
112:17, 117:15,
123:8, 135:5, 144:7,
187:20, 258:20
mechanic [1]-153:20
meet [5] - 105:5,
140:22, 204:23,
276:12, 276:14
meeting [1] - 260:1
Meeting [33]-18:3,
19:14, 23:8, 28:5,
88:13, 95:6, 95:16,
96:1, \(96: 19,120: 16\)
121:4, 141:8,
141:18, 141:20,
141:21, 142:22,
153:8, 153:9,
158:14, 165:13,
177:25, 189:14,
189:23, 207:11,
207:13, 207:19,
\(211: 6,212: 18\),
\(214: 21,215: 10\)
\(221: 4,229: 12\),
\(239: 21\)
meetings [8]-95:14,
97:17, 98:13, 142:6, 190:25, 192:21, 230:8, 259:19
meets [1] - 181:19
MEGAN [1] - 2:19
melting [1] - 177:8
members [3]-174:5, 183:10, 222:19
memos [2] - 50:12, 50:18
men [1]-41:10
mention [1] - 204:10
mentioned [27]-24:6, 24:8, 59:6, 85:6, 86:6, 93:12, 116:24,
128:19, 129:4,
144:5, 144:20,
155:24, 160:2,
161:19, 185:1,
185:5, 189:11,
191:3, 193:16,
194:1, 195:11,
197:2, 206:23,
210:19, 211:24,
213:23, 226:22
mentioning [2] -
126:14, 143:11
mentored [1] - 241:11
menu [1]-112:1
mesh [1] - 171:4
mess [3]-67:25, 70:2,
71:22
met [9] - 142:10,
156:10, 181:18,
189:4, 204:21,
205:1, 205:3, 205:4, 231:15
metastable [12]-77:9,
77:11, 77:14, 78:5,
78:18, 78:22, 79:9,
175:18, 234:19,
255:15, 255:17, 255:19
method [2] - 117:24,

126:20
methods [2] - 139:18, 185:24
mic [2] - 68:18, 172:5
MICHAEL [24] - 3:15, 3:16, 7:25, 8:22, 12:5, 12:24, 64:1, 64:6, 264:19,
264:22, 265:4,
265:10, 274:7,
274:11, 274:15,
274:22, 275:7,
275:17, 275:19,
275:23, 276:1,
276:6, 276:9, 276:20
Michael [5] - 4:6,
63:24, 64:9, 76:9, 144:5
Michael's [2] - 88:6,
273:23
micro [4] - 195:12, 195:17, 195:19, 195:21
middle [6] - 139:21,
151:9, 193:8,
231:13, 260:10,
275:1
midway [2] - 133:18,
134:13
might [19] - 45:2,
75:11, 85:2, 87:4, 93:6, 111:24,
113:19, 123:15,
127:14, 146:23,
150:23, 152:23,
196:19, 215:13,
216:17, 220:15,
265:4, 269:12
migrate [1] - 235:3
migrated [1] - 242:21
mile [1] - 52:22
mill [1] - 155:8
Miller [4]-4:16, 19:20, 174:9, 266:16
MILLER [7] - 3:5,
19:22, 174:8,
174:17, 175:8,
182:10, 266:17
million [12] - 61:9, 69:21, 72:14, 102:8, 102:15, 109:16, 160:20, 168:12, 196:17, 197:2, 224:11, 247:22
millions [1] - 245:21
mind [8]-50:3, 52:5, 89:22, 108:17, 128:6, 174:22, 236:10, 269:17
mine [1] - 169:18
mineral [1] - 243:14 mines [1] - 169:19 minimal [4]-100:14,
121:15, 121:17, 145:5
minimize [15]-27:2, 84:20, 91:8, 92:23, 105:8, 111:22, 124:21, 124:22, 144:9, 145:1, 148:8, 262:3, 271:4, 271:15, 272:9
minimized [2] 141:23, 224:5
minimum [6] - 114:13,
148:9, 150:4, 150:5,
193:19, 199:8
minor [2] - 79:8, 79:18
minuses [2] - 188:11,
237:7
minute [2] - 63:21,
132:4
minutes [2] - 103:19, 103:22
miscommunicated [1] - 181:10
missed [1] - 255:12
mistaken [1] - 237:3
mistakes [1] - 127:5
mitigate [4]-162:16, 180:6, 219:13, 222:15
mitigated [3]-62:20, 162:15, 178:17
mitigation [7] - 180:2,
218:22, 218:23,
219:2, 219:4,
221:22, 222:12
mix [4] - 29:12,
242:10, 242:24, 246:24
mixed [2] - 243:5, 244:11
modified [1] - 207:6
modifying [1] - 178:15
moment [2]-163:24, 176:5
Monday [1] - 276:13
money [22] - 92:24,
95:19, 100:11,
100:15, 100:16,
100:17, 101:2,
103:1, 103:12,
104:16, 111:20, 116:17, 124:12, 148:10, 149:17, 191:11, 213:8, 223:16, 228:4, 228:17, 228:20, 228:23
monitor [3]-83:6, 117:16, 128:10 monitored [1] 180:13 monitoring \({ }_{[8]}\) 26:13, 61:10, 92:20, 92:22, 117:9, 128:15, 181:4, 208:5
monitors [1]-26:14
monologue [1] -
257:20
Monroeville [1] -
131:14
month [6]-61:11,
117:21, 117:22,
118:12, 118:13,
118:14
months [3]-28:17,
117:11, 117:12
monument [2] -
117:17, 117:19
monuments [1] 117:17
Moon [1] - 131:14
morning [3]-20:14,
105:17, 135:20
most [23]-29:14,
40:10, 79:23, 82:11,
106:10, 128:13, 151:5, 155:5, 156:17, 156:21, 170:2, 214:6, 214:12, 223:15, 229:14, 234:18, 237:25, 239:21, 243:15, 244:10, 245:17, 249:15, 269:5
mostly [2]-82:19, 126:20
mother [19]-67:23,
68:1, 68:6, 73:24, 74:3, 74:4, 74:18,
76:1, 91:21, 91:22,
91:25, 144:17,
144:22, 145:9,
234:17, 242:19,
253:14, 275:21, 275:23
mouth [1] - 77:10
move [12]-24:16,
34:10, 78:21, 87:5,
154:18, 167:14,
168:8, 168:12,
242:19, 256:2,
273:4, 273:13
moved [8]-63:11,
109:8, 193:3, 201:5, 243:12, 245:25,
246:8, 246:14
movement [11] -
73:19, 77:8, 78:9, 78:11, 78:13, 91:20,
109:8, 118:16,
176:4, 176:13,
246:10
moves [2] - 73:18, 176:5
moving [17]-6:12,
20:13, 81:9, 118:17,
118:18, 161:21,
193:5, 203:14,
203:15, 207:15,
209:15, 223:5,
227:15, 250:5,
250:9, 250:25,
262:14
MPDS \({ }_{[1]}\) - 205:8
MR \({ }_{[375]}\) - 6:4, 6:8,
6:15, 7:2, 7:5, 7:8,
7:10, 7:18, 7:19,
7:23, 7:25, 8:2, 8:7,
8:18, 8:22, 9:2, 9:6,
9:7, 9:10, 9:11, 9:12,
9:14, 9:15, 9:20,
10:4, 10:5, 10:25,
11:3, 11:5, 11:7,
12:3, 12:5, 12:7,
12:14, 12:24, 13:6,
18:5, 18:6, 18:11,
18:13, 18:15, 18:17,
18:18, 19:16, 19:19,
19:22, 19:23, 19:24,
20:3, 34:12, 42:14,
42:15, 42:16, 42:23,
42:25, 43:2, 43:6,
43:11, 43:16, 43:19,
43:22, 44:2, 44:20,
44:24, 46:10, 46:12,
46:14, 46:16, 46:20,
46:24, 47:1, 47:4,
47:9, 47:12, 47:21,
60:14, 63:20, 63:24, 64:1, 64:6, 76:8,
77:19, 84:25, 85:5,
103:18, 103:25,
104:2, 104:3, 104:7,
105:20, 105:22,
106:7, 120:15,
121:11, 123:6,
123:7, 123:10,
125:7, 126:13,
126:17, 127:13,
127:16, 128:4,
129:21, 130:5,
130:6, 130:12,
130:14, 131:11,
132:3, 132:10,
132:22, 133:13,
133:20, 134:12,

134:25, 135:18,
136:2, 137:13,
137:18, 137:25,
138:4, 138:19,
138:23, 139:3,
139:6, 140:1, 140:3, 140:10, 140:11, 140:16, 140:19, 144:12, 144:15, 144:16, 144:19, 145:2, 145:8, 145:13, 145:18, 145:25, 146:3, 146:9, 146:11, 146:12, 146:13, 146:14, 146:18, 146:21, 147:1, 147:3, 147:6,
147:11, 148:23, 149:20, 150:8, 150:21, 154:9, 154:11, 154:20, 154:22, 156:3, 156:4, 156:5, 158:17, 158:21, 158:22, 159:4, 159:6, 159:11, 159:13, 159:25, 160:14, 163:24, 164:4, 165:24, 166:4, 166:6, 166:11, 167:18, 167:22, 168:5, 168:6, 169:10, 170:7, 170:13, 170:21, 171:1, 171:18, 172:3, 172:6, 172:11, 172:14, 172:16, 172:22, 172:24, 173:1, 173:5, 173:18, 173:19, 173:23, 174:3, 174:4, 174:8, 174:14, 174:17, 174:19, 174:21, 174:23, 174:25, 175:1, 175:8, 181:21, 182:8, 182:10, 183:9, 186:25, 200:2, 200:11, 200:22, 201:9, 201:24, 201:25, 205:22, 206:2, 211:5, 211:13, 211:18, 212:6, 212:20, 213:3, 213:5, 213:22, 215:4, 215:16, 215:22, 215:25, 216:6,

216:21, 217:16, 218:9, 218:24, 219:4, 219:6, 219:20, 219:24, 220:8, 220:19, 221:1, 221:25, 222:8, 222:13, 222:17, 223:14, 224:8, 224:16, 224:20, 224:23, 224:25, 225:3, 225:8, 225:17, 226:4, 226:7, 226:8, 230:20, 230:22, 230:24, 231:1, 233:14, 235:12, 237:25, 238:4, 238:7, 238:10, 238:15, 238:18, 239:7, 240:9, 240:16, 240:25, 241:6, 242:17, 243:20, 244:17, 245:7, 245:14, 246:12, 249:13, 249:14, 249:20, 254:20, 254:22, 254:25, 255:2, 255:4, 255:6, 255:8, 255:9, 255:11, 256:5, 256:7, 257:12, 257:23, 258:10, 258:11, 258:13, 258:16, 261:4, 261:9, 261:12, 261:13, 261:18, 261:20, 261:22, 261:25, 262:7, 262:12, 262:18, 262:20, 262:24, 263:16, 263:21, 264:8, 264:11, 264:12, 264:15, 264:17, 264:19, 264:21, 264:22, 265:3, 265:4, 265:6, 265:10, 265:12, 265:15, 265:19, 265:21, 265:23, 266:1, 266:4, 266:10, 266:14, 266:15, 266:17, 266:18, 266:20, 266:21, 274:7, 274:9, 274:11, 274:14, 274:15, 274:18, 274:22, 275:1, 275:7, 275:13, 275:17, 275:18, 275:19,

275:21, 275:23,
275:25, 276:1,
276:4, 276:6, 276:8,
276:9, 276:11,
276:19, 276:20,
276:21, 276:25
MS [41] - 76:10, 76:14, 78:1, 85:3, 85:24, 98:8, 183:19, 183:25, 188:2,
200:8, 200:21, 201:2, 201:11, 202:2, 226:10, 226:15, 230:23, 231:6, 233:21, 233:23, 235:25, 236:2, 237:21, 238:2, 238:6, 238:8, 238:11, 238:17, 239:9, 239:10, 240:14, 240:21, 241:5, 241:14, 241:16, 243:16, 244:13, 245:4, 245:12, 246:23, 266:25
mud [2]-72:12, 113:3
multiple [10]-29:4, 29:6, 47:13, 49:4, 53:14, 112:8, 150:11, 150:13, 192:12, 192:13
multiplication [1] 127:5
municipal [1]-152:19 municipalities [10]94:25, 131:13, 131:15, 131:24, 152:14, 152:20, 155:5, 155:6, 248:7, 248:8
municipality [12] -
93:15, 96:17, 124:6,
124:19, 128:7,
128:16, 131:20,
139:11, 153:6,
154:24, 166:1, 166:3
mush [1]-113:3
muster [2]-129:15,
130:13
Myrtle [1] - 206:9
\begin{tabular}{c}
N \\
\hline
\end{tabular}
name \([8]\) - 12:15, 12:17, 47:22, 59:12, 59:15, 80:14, 174:8, 226:11
Nardonia [1] - 147:23
narrow [2]-133:22,

271:10
narrowed [4]-248:21, 248:22, 248:24, 271:13
National [1] - 52:10 natural [8]-35:3, 41:6, 41:8, 41:9, 61:13, 189:19, 243:7, 243:13
naturally [4] - 40:13, 87:17, 201:15, 245:16
nature [26]-21:22, 23:24, 25:22, 67:23, 68:1, 68:6, 73:24, 74:3, 74:4, 74:18, 76:1, 86:16, 91:21, 91:22, 91:25, 106:13, 132:20, 144:17, 144:22, 145:9, 195:5, 234:17, 242:19, 253:14, 275:21, 275:23
near [6]-141:8, 142:2, 177:24,
212:20, 222:2, 222:3
nearby [3]-135:25,
178:8, 179:24
nearest [1]-88:4
necessarily [10] -
113:2, 113:18,
116:6, 223:22,
236:20, 243:10,
245:14, 262:24,
272:12, 273:15
necessary [13]-
21:17, 25:4, 25:6,
25:7, 25:19, 31:19,
35:10, 35:11, 82:5,
84:23, 219:18,
232:11, 232:14
necessity \({ }_{[2]}-11: 10\),
233:4
need [42]-6:15,
11:14, 17:1, 17:3,
24:16, 31:7, 31:21,
32:24, 33:10, 33:22,
53:25, 54:1, 75:18,
99:13, 100:12,
102:17, 112:13,
115:5, 116:12,
124:23, 134:24,
139:1, 140:8, 146:7,
172:8, 172:11,
189:2, 191:12,
196:12, 213:8,
227:1, 232:21,
233:19, 240:22,
257:12, 258:20,

263:8, 263:13, 264:1, 271:21, \(273: 2\)
needed \({ }_{[10]}\) - 14:9,
99:16, 99:21, 100:8, 203:25, 233:24, 254:9, 271:10, 271:12, 276:14 needing [3] - 172:23, 218:21, 239:1
needs [10] - 11:12, 24:17, 36:12, 54:2, 57:11, 148:11,
217:7, 223:11,
231:10, 233:14
negligent \({ }_{[1]}-137: 12\)
negligible [1] - 241:1
neighbor [1] - 272:12
neighbor's [1]-276:5
neighborhood \([7]\) -
88:8, 102:14,
186:21, 199:3,
247:21, 268:25,
269:6
neighbors [7]-79:25, 93:2, 184:6, 184:10, 184:24, 215:24, 259:23
neighbors' \({ }^{[1]}\) - 66:25
never [4]-77:10,
182:13, 188:1, \(246: 5\)
new [25] - 7:22, 7:23,
7:25, 8:14, 11:4,
94:18, 105:12,
112:18, 113:9,
155:15, 168:1,
168:16, 191:12,
191:21, 192:1,
192:16, 192:17,
193:15, 210:8,
264:24, 272:19,
273:24, 274:1,
274:11
news [1] - 145:19
next [13] - 57:8,
113:23, 118:13, 132:12, 186:2, 190:24, 206:2, 221:13, 226:8, 256:9, 274:23, 275:10, 275:15
nice [5] - 81:24,
134:10, 166:15,
185:7, 221:8
night \({ }_{[1]}\) - 184:19
nine [2]-117:11, 276:12
nobody [9]-25:9,
25:21, 30:23, 34:3, 111:1, 164:14, 169:3, 192:25,

255:18
noise [6] - 135:23,
220:25, 221:1,
221:9, 221:14,
262:19
non [1] - 70:22
non-uniform [1] 70:22
none [11]-9:18,
74:19, 107:12,
138:4, 165:2,
174:25, 204:6,
211:9, 234:7,
234:13, 265:10
nonresponsive \({ }_{[1]}\) 257:21
noon [2]-103:19, 276:13
normal [5]-145:11, 154:6, 156:23, 198:13, 200:23
normally [4]-33:24, 155:10, 188:14, 189:15
north [4]-197:23, 198:17, 273:1, 273:12
northwest \({ }_{[1]}\) - 141:17
Norwin [1] - 217:17
notation [1] - 202:16
note [1] - 6:10
noted [8]-12:4,
18:11, 34:12, 43:11,
156:4, 158:21,
182:8, 258:11
notes [2]-203:3, 278:8
nothing [9]-9:3, 18:16, 139:21, 149:16, 154:7, 154:15, 204:4, 255:17, 256:24
notice [1]-66:15
November [1] - 204:8
NPDS \({ }_{[1]}\) - 226:21
nuclear \({ }_{[1]}\) - 115:7
number [12]-105:9, 112:16, 112:17, 112:22, 158:6, 159:20, 184:13, 184:14, 197:10, 197:13, 272:7, 272:8
numbering [1] - 63:13
numbers [1] - 144:22
numerous [1] - 143:18
\begin{tabular}{ll}
\hline \(\mathbf{O}\) & \begin{tabular}{c}
often \([5]-21: 9,135: 1\), \\
\(137: 25,179: 22\), \\
\\
\cline { 1 - 1 } o'clock \([1]-276: 12\) \\
Oakdale \([1]-96: 3\)
\end{tabular} \\
Ohio \([14]-60: 23\), \\
& \(60: 25,61: 2,142: 3\),
\end{tabular}

Oaks [1]-1:4
oath \([4]-6: 16,6: 18\), 6:19, 6:24
object [6]-8:11, 18:6, 43:7, 149:23, 158:17, 257:13
objected [1] - 154:17
objection [12] - 11:8, 12:6, 18:10, 154:10, 156:3, 159:2, 174:24, 181:21, 258:10, 276:16, 276:19, 276:20
objectionable [1] 149:23
objections [1] - 43:7
OBJECTORS \({ }_{[1]}-3: 9\)
objectors [1]-20:15
objects [1]-123:11
observation [2] -
181:5, 236:4
observations [1] 232:7
observe [3]-22:3, 31:6, 128:20
observed [4]-202:1, 202:3, 214:7, 228:1
obtained [2]-21:7, 82:19
obviously [7] - 11:13,
53:15, 142:2,
154:19, 176:22,
218:16, 265:8
occasionally [1] -
213:19
occupancy [1] 230:15
occur [6]-51:3, 61:24, 62:25, 117:7, 119:1, 170:1 occurred [6] - 48:20, 49:6, 60:19, 110:4, 206:21, 276:1
occurring [1] - 135:16
ocean [1]-69:21
OF [6]-2:9, 2:13,
2:17, 3:4, 3:9, 3:15
OFF [3]-68:20,
274:10, 276:24
offer [1]-117:1
offered \([3]-9: 19\), 43:15, 158:19 offering [1] - 34:11
offset [3]-162:18,
163:3, 222:4
often [5] - 21:9, 135:1,
137:25, 179:22,
Ohio [11] - 60:23,
60:25, 61:2, 142:3,

147:23, 224:22,
224:24, 225:1,
225:3, 225:6, 267:21
oils [1] - 141:4
old [14]-24:3, 67:25,
91:11, 110:8, 110:14, 110:15, 110:16, 118:22,
168:23, 169:1,
169:13, 192:5,
192:11, 267:4
oldest [1] - 193:6
ON [5] - 2:9, 2:17, 3:4, 3:9, 3:15
once [10]-29:10,
56:21, 88:18, \(98: 5\),
111:24, 117:21,
136:22, 140:5,
242:24, 275:2
one [133]-7:6, 10:2,
10:18, 11:24, 12:1,
14:21, 16:21, 16:23,
20:8, 20:10, 20:19,
23:18, 28:25, 30:13,
44:12, 55:5, 57:24,
58:7, 59:7, 60:17,
64:19, 72:17, 76:4,
76:22, 81:5, 84:13,
86:23, 88:7, 90:4,
90:23, 90:24, 98:15,
104:8, 104:10,
108:1, 112:8,
112:16, 115:19,
115:20, 115:23,
118:12, 124:1,
125:1, 126:11,
128:6, 133:6, 135:6,
135:7, 135:8,
136:20, 140:9,
145:24, 147:13,
153:14, 156:18,
160:5, 164:15,
166:14, 167:10,
169:13, 169:20,
172:7, 175:25,
176:2, 176:7,
176:10, 179:1,
179:7, 180:15,
184:4, 185:1,
185:22, 188:21,
190:23, 193:13,
196:8, 199:9,
199:12, 199:13,
199:21, 200:4,
200:5, 200:6, 200:8,
200:10, 200:22,
200:25, 201:22,
202:16, 203:9,
205:8, 207:12,
207:16, 208:16,

208:17, 215:7, 215:18, 216:7, 216:18, 217:1, 217:14, 217:19, 225:10, 226:10, 230:19, 238:1, 238:6, 238:8, 238:12, 238:19, 239:15, 243:21, 248:11, 248:14, 248:24, 249:2, 249:14, 259:15, 264:20, 267:1, 267:15, 269:4, 274:7, 275:9
one-tenth [1] - 208:17
one-to-one [1] 185:22
ones [4]-99:23,
167:9, 184:9, 185:2
ongoing [1] - 227:10
online [1]-118:1
open [6] - 6:5, 60:15,
142:23, 161:18,
169:6, 214:21
opened [1] - 169:15
opening [1] - 170:5
operations [2]-83:11, 125:22
opinion [14]-34:11,
59:9, 82:4, 117:1,
137:16, 148:4,
152:24, 154:12,
154:18, 155:7,
181:23, 181:25,
216:15, 223:7
opinions [2]-20:25,
60:5
opportunity \([3]-8: 11\), 8:16, 261:3
opposing [1] - 183:13
opposite [1] - 238:16
option [2] - 184:4, 236:21
options [2]-184:5,
189:14
order [23]-17:16,
22:21, 33:13, 34:13,
36:12, 52:20, 85:16,
100:11, 100:16,
100:18, 100:23,
101:1, 110:5, 122:9,
134:13, 134:21,
135:25, 192:22,
213:8, 228:16,
228:22, 271:11, 271:22
ordinance [3]-11:12,
37:25, 155:23
ordinances [4]-90:8,

93:10, 93:23, 94:13
ordinary [1]-154:8
oriented [1]-14:16
original [5] - 81:19,
135:3, 135:4, 204:7, 262:13
originally [1] - 251:11
Osborne \({ }_{[1]}\) - 248:13
OSHA [7] - 185:15,
186:3, 186:5,
186:10, 186:14,
186:22, 187:1
otherwise [2] - 78:3,
91:2
outcome [1] - 176:18
outcrops [4] - 99:15,
99:20, 99:22, 100:7
outlet [1] - 214:8
outside [12] - 18:7,
150:4, 150:9, 151:7,
157:5, 157:25,
158:18, 161:24,
162:21, 181:24,
214:18, 250:7
over-engineering [1] -
251:17
overall [2]-85:6,
265:23
overflows [2] -
253:22, 254:14
overlay [2] - 198:11,
198:22
overload [1] - 142:17
oversight [1] - 224:15
overwhelm [1] -
275:10
own [9]-47:2, 74:18, 86:12, 108:8, 109:1,
131:7, 156:6, 265:25
owned [7]-86:14,
108:10, 108:20,
108:21, 164:12,
221:23
OWNER \({ }_{[1]}-3: 15\)
owners [1] - 91:24
ownership [1] -
130:18
owns [1] - 184:21
Oxford [1] - 78:22
\begin{tabular}{l}
\hline \multicolumn{1}{c}{\(\mathbf{P}\)} \\
\hline p.m \([1]-277: 3\) \\
\(\mathbf{P . O}_{[1]}-2: 11\) \\
\(\mathbf{P A}_{[14]}-1: 4,1: 24\), \\
\(2: 11,2: 16,2: 20,3: 7\), \\
\(3: 12,3: 17,69: 18\), \\
102:20, 156:17, \\
156:18, 221:6, \\
278:16
\end{tabular}
packed \({ }_{[1]}-70: 14\)
pad [4]-14:6, 108:12,
134:10, 263:25
PAGE [2]-4:3, 5:1
page [4]-9:8, 21:5, 27:20, 60:16 pages [4]-58:9, 63:12, 63:16, 204:22
paper [1]-98:7
paragraph [2]-21:5, 27:22
parameters [3]-
33:13, 75:13, 129:8
parent [1]-217:4
Park [3]-2:15, 18:24, 35:7
park [4] - 34:23, 35:4, 39:6, 155:17
parking [12]-35:6,
35:24, 200:17,
202:23, 202:24,
203:1, 203:5, 203:6,
227:6, 268:7, 273:2, 273:11
parks [1] - 102:19
parkway [2]-138:6, 138:11
part [68]-8:15, 10:10, 10:11, 13:14, 14:18, 15:7, 16:9, 31:19,
46:22, 47:7, 48:5,
48:12, 49:19, 49:24,
50:13, 50:21, 51:3,
51:14, 51:19, 52:8,
57:7, 61:19, 61:24,
62:11, 62:23, 69:7,
75:22, 77:4, 80:23,
85:7, 86:4, 86:17,
86:18, 93:17, 95:14,
96:11, 126:7, 126:9,
126:11, 129:10,
136:4, 142:11,
142:20, 143:10,
152:6, 152:9, 161:2,
164:11, 180:3,
190:5, 190:22,
193:6, 197:18,
198:10, 198:14,
213:5, 226:21,
229:7, 229:8, 230:1, 235:23, 243:15, 243:25, 252:15, 256:8, 271:9, 273:24
partially \({ }_{[1]}\) - 108:20
participated [1] 76:24
particle [4]-82:24, 83:6, 208:25, 209:10 particular [22]-21:21, 27:23, 50:6, 52:4,

58:19, 65:9, 71:9, 95:15, 110:25, 111:8, 131:20, 142:12, 158:2, 159:16, 169:19, 188:5, 188:10, 203:9, 204:10, 236:6, 240:25, 243:13
parties \({ }_{[1]}-8: 10\)
partner [2]-46:8, 130:25
partners [2] - 46:18, 47:11
parts [3]-45:23,
134:23, 270:19
pass [1]-129:15
passes [1]-130:13
passing [2]-51:16, 164:22
past [5] - 60:17, 87:21,
150:14, 267:13,
268:20
pasture [1]-166:15
path [3]-143:7, 254:4, 258:17
pattern [2]-136:14, 136:16
pavement \({ }_{[1]}\) - 143:24
pay [6]-34:24, 68:16,
76:2, 213:2, 228:22,
272:22
paying [4]-227:19,
228:9, 229:1, 229:2
peak [4]-82:24, 83:6, 208:25, 209:10
peneplain [2]-69:19, 69:20
penetrating \({ }_{[1]}\) -
71:18
penetration \({ }_{[1]}\) 208:18
Penn [2]-215:17, 217:17
PennsyIvania [20] 12:22, 13:3, 40:11, 50:5, 52:7, 52:16, 52:19, 52:22, 53:1, 53:2, 53:3, 53:9, 53:16, 69:10, 69:12, 82:19, 91:11, 99:4, 106:14, 106:17
people [33]-35:7,
78:23, 80:5, 89:11, 90:16, 91:16, 91:23, 98:1, 124:20, 129:16, 129:18, 135:22, 137:9, 140:17, 145:19, 184:19, 186:5,

193:11, 193:13, 209:5, 214:22,
215:1, 215:7, 218:6,
221:4, 221:12,
223:8, 229:15,
231:9, 259:16,
270:21, 272:1, 276:6
people's [1]-219:12
Pepsi \({ }_{[1]}\) - 155:19
per [6]-52:22, 53:3,
61:10, 82:18, 114:9, 115:25
perceive [1] - 260:6
percent [29]-107:18,
136:3, 193:23,
194:10, 195:2,
198:13, 198:15,
198:16, 198:19,
198:21, 198:24,
199:25, 208:16,
208:17, 224:17, 224:18, 232:13, 233:5, 237:11, 237:16, 238:3, 238:5, 238:10, 238:14, 238:19, 238:21, 266:7
percentage [9]-
107:6, 193:18, 193:22, 195:1, 209:4, 209:6, 224:10, 224:12, 238:16
percentages \({ }_{[1]}\) 233:6
percolates [1] -
113:12
percolating \({ }_{[1]}-144: 3\)
perfectly [1] - 220:16
perform [1]-125:15
performance [1] 213:18
performed [4]-82:22, 109:18, 181:20, 207:25
perhaps [1]-71:20
perils [1]-217:9
perimeter [1]-85:9
period [6]-165:20,
187:23, 209:17,
269:1, 269:3, 269:4
periodically \({ }_{[1]}\) -
117:21
permission [2] -
248:25, 249:1
permit [10]-172:9,
172:12, 172:19,
204:25, 205:6,
205:8, 226:21,
227:11, 228:13,

266:8
permits [1]-230:15
permitted [1]-172:21
permitting [1] -
211:14
person [5]-108:20,
108:21, 186:19, 206:2, 226:8
personal [1]-267:7
personally [1] 230:23
personnel [4] -
114:18, 114:21,
125:20, 223:19
persons [1]-266:11
perspective \([7]\) -
104:19, 161:9,
162:7, 162:8, 162:24, 236:7, 272:14
Peter [1]-215:17
petition \([1]-174: 10\)
phase [7]-76:25,
107:2, 125:12,
181:4, 182:25,
187:3, 256:9
phillips [1]-44:3
PHILLIPS [95] - 4:4,
12:9, 46:14, 46:20, 47:6, 47:12, 60:9, 84:25, 85:5, 85:19, 120:15, 121:6, 132:22, 134:12, 140:3, 140:11, 140:19, 144:15, 144:19, 145:8, 145:18, 146:3, 146:11, 146:13, 146:18, 167:22, 172:11, 172:16, 172:24, 173:19, 201:25, 211:5, 211:13, 211:18, 212:6, 212:20, 213:3, 213:5, 213:22, 215:4, 215:16, 215:22, 215:25, 216:6, 216:21, 217:16, 218:9, 218:24, 219:4, 219:6, 219:20, 219:24, 220:8, 220:19, 221:1, 221:25, 222:8, 222:13, 222:17, 223:14, 224:16, 224:23, 225:3, 225:17, 226:7, 230:22, 231:1, 237:25,

238:4, 238:7, 238:10, 238:15, 238:18, 246:12, 258:13, 261:9, 261:13, 261:20, 261:25, 262:12, 262:20, 265:3, 265:6, 265:12, 265:19, 266:4, 274:14, 274:18, 275:1, 275:13, 275:18, 275:21, 275:25, 276:4, 276:8
Phillips [38]-5:2,
7:12, 7:14, 9:13,
9:21, 10:5, 10:16,
12:17, 19:18, 20:4,
43:12, 43:14, 47:1,
48:13, 51:12, 51:18,
53:23, 57:23, 60:15,
61:17, 61:21, 64:7,
80:21, 104:8, 147:9,
173:3, 183:20,
183:23, 226:13,
231:4, 231:7,
237:10, 249:18, 257:16, 258:12,
261:5, 264:13,
266:23
Phillips' [4]-7:16, 9:16, 48:4, 48:8
physical [5] - 17:5,
17:7, 54:17, 127:11,
191:16
picked \({ }_{[1]}\) - 85:8
picking [1]-112:25
picture [2]-206:12, 240:18
piece [10]-23:5,
37:11, 98:18,
100:23, 133:22,
157:22, 168:10,
169:2, 202:8, 219:14
pieces [2]-126:23,
248:15
piles [1] - 157:1
pine \({ }_{[1]}\) - 274:3
pipe [4]-141:6,
194:14, 214:9, 270:8
piped [1]-141:25
pipes [1] - 194:3
piping [2]-169:16
Pitt [1]-2:20
Pittsburgh [10] - 1:24,
2:20, 3:7, 3:12, 3:17, 21:10, 69:23,
243:18, 244:14,
278:16
place [17]-17:12,
32:18, 52:23, 53:4,

84:18, 93:9, 113:23, 119:19, 132:6, 141:17, 142:18, 170:11, 188:15, 256:21, 259:3, 267:12, 278:9 placed \([7]-22: 6\), 40:16, 113:24, 114:1, 114:14, 115:13, 215:6
placement [2] 120:12, 187:24 places [2]-239:11, 254:2
placing \({ }_{[1]}\) - 129:7
plain [20]-15:4,
136:21, 146:6,
162:14, 162:15,
162:16, 162:25,
163:1, 163:7,
163:12, 218:21, 218:25, 219:23, 221:18, 222:16, 222:23, 224:21, 225:15, 225:25, 226:6
plains [1]-218:23 plan [35]-6:24, 13:16, 16:6, 27:23, 29:19, 29:25, 30:4, 30:14, \(30: 18,34: 5,56: 5\), 79:16, 84:20, 88:6, 101:14, 140:23, 157:7, 166:17, 174:13, 180:19, 190:10, 193:1, 195:16, 201:18, 211:25, 212:3, 212:22, 226:23, 230:11, 238:22, 239:2, 251:12, 259:9, 259:11, 270:19
planet \({ }_{[1]}\) - 167:13 planned [2]-176:18, 206:11
planning [6] - 10:12,
14:9, 33:24, 33:25, 97:16
plans [10]-14:3,
36:21, 36:22, 81:6, 95:16, 115:16, 167:5, 167:7, 262:5 plant [4]-240:19, 240:23, 261:17, 273:24
planted [1]-265:16
plants [1]-274:20
plaster [1]-168:10 plateau [3]-185:7,

198:2, 247:12
plates [1]-72:24
played [1]-216:10
players [1]-75:2
pleases [1]-43:2
pledge \({ }_{[2]}-6: 6,6: 7\)
plenty \({ }_{[1]}\) - 259:16
plus [6]-32:9, 32:10, 63:16, 134:12, 150:14, 220:14 plusses [2]-188:11, 237:6
plywood [1] - 169:3 point [31]-11:25, 19:12, 25:2, 29:3, 66:15, 73:23, 74:8, 79:17, 83:16, 87:18, 87:19, 89:19, 98:13, 101:5, 108:1, 109:5, 110:17, 133:3, 145:14, 167:24, 176:10, 176:11, 177:13, 189:12, 191:22, 221:19, 231:9, 255:11, 259:25, 264:20, 275:8
pointed [2] - 74:1, 170:4
pointing \({ }_{[1]}\) - 273:19
points [3] - 100:2,
175:23, 268:21
pond [9]-210:2,
210:9, 213:10,
213:21, 223:6,
250:13, 274:13, 274:17, 275:4
ponds [7]-172:10,
206:10, 207:16,
226:17, 226:19,
269:22, 274:19
poof [1] - 192:18
poor [1]-116:19
populated [1] - 90:16
portal [2]-68:22,
68:24
portion [2]-233:15, 245:1
portions [2]-82:9, 247:7
posed [1]-254:23
position [3]-11:13,
11:21, 11:23
positive [1]-250:20
possibility \({ }_{[2]}\) -
213:20, 218:22
possible [25]-27:18, 27:19, 40:2, 42:8, 42:9, 62:23, 74:13, 82:15, 85:14,

106:23, 107:5,
112:5, 112:23,
118:19, 120:4,
120:8, 122:4,
169:13, 203:7,
203:8, 208:2,
221:20, 247:11, 263:3, 272:3
possibly [10]-32:1, 41:25, 42:2, 67:3, 89:11, 152:11, 171:6, 228:16, 233:2, 273:13
post [1]-226:22
posted \({ }_{[1]}\) - 13:16
potential [19]-21:22,
22:16, 23:19, 23:24,
30:20, 33:19, 39:8,
41:16, 51:2, 81:23,
83:8, 86:7, 89:9,
90:9, 90:14, 113:21,
131:10, 151:13,
201:1
potentially [13]-
11:17, 56:17, 62:20,
78:21, 81:11, 88:25,
134:16, 139:13,
150:5, 196:21,
235:8, 270:9, 271:1
pounds [1]-211:8
pouring [1]-268:5
power [4]-89:19,
98:13, 100:2, 101:5
practical \({ }_{[1]}\)-111:15
practice [3]-105:11,
146:10, 262:15
practices [1]-74:14
pre [3]-61:13,
129:24, 151:3
pre-development [2] -
61:13, 151:3
pre-qualification [1] 129:24
precarious [1]-79:4
precautions [2]-26:6, 92:10
precision [1]-267:10
predict \({ }_{[1]}\) - 77:7
predominant \({ }_{[1]}\) 53:16
predominantly [1] 119:1
prefer [1]-46:10
preference [3] -
103:24, 270:17, 272:6
preliminarily [1] 32:12
preliminary \({ }_{[14]}\) 14:2, 14:9, 57:12,

79:15, 98:4, 99:9, 99:11, 157:14,
157:23, 167:23,
191:4, 230:8,
230:10, 232:6
premium [2]-180:22,
180:25
preparation [2] -
147:19, 180:22
preparatory \({ }_{[1]}\) -
180:17
prepare [7]-13:7,
17:20, 50:12, 77:3,
100:2, 129:23,
187:19
prepared [2]-13:9, 150:12
preparing [2]-14:2, 220:11
present [8]-64:20,
77:1, 84:8, 156:14,
156:16, 158:12,
158:13, 183:14
presentation [1] -
89:19
presentations [2]-
89:16, 98:13
presented [2]-62:6,
100:3
presenting [3] - 10:24,
11:1, \(34: 5\)
president \({ }_{[1]}\) - 47:25
presumed [1]-6:22
pretty \({ }_{[18]}\) - 40:10,
68:11, 69:18, 71:13,
113:1, 156:21,
160:1, 165:14,
178:20, 192:11,
196:7, 196:10,
203:12, 235:5,
235:6, 245:18,
250:2, 260:16
prevent [3]-168:20,
168:21, 253:9
previous [2]-192:4, 218:9
previously \([14]-7: 21\),
8:1, 8:3, 8:13, 8:24, 9:3, 9:4, 10:7, 24:7, 43:18, 68:9, 91:9, 132:5, 182:3
price [5] - 158:8,
159:22, 191:8,
191:18, 251:15
primarily [1] - 80:1
principal [1]-47:25
principle [1]-79:1
principles [1]-90:19
printing [1] - 278:11
prints [1]-167:17
private [9]-154:7,
181:12, 181:17,
181:24, 182:1,
182:5, 182:25,
223:20, 258:14
probability \({ }_{[1]}\) -
208:16
probing [1]-22:16
problem [18]-68:6,
70:9, 92:3, 92:6,
97:11, 99:7, 115:23,
135:10, 163:8,
165:6, 165:7,
218:18, 222:23,
242:18, 244:4,
244:25, 246:21,
272:20
problematic [1]-84:3
problems [16]-27:3,
51:3, 52:15, 52:19,
95:21, 97:19, 99:5,
124:21, 132:15,
132:24, 133:11,
160:5, 160:13,
201:1, 227:24, 228:1
procedural [1]-42:17
procedure \({ }_{[1]}\) - 8:8
procedures [2] -
226:24, 226:25
proceed [4]-7:9,
18:17, 18:18, 46:11
proceeding \({ }_{[1]}-42: 23\)
proceedings [1] 278:6
process [19]-8:16,
13:12, 13:14, 22:14,
25:5, 26:1, 26:3,
27:4, 39:3, 55:2,
84:1, 94:4, 126:7,
127:2, 205:18,
219:1, 223:8,
224:14, 256:8
processed [1] -
244:12
prodding [1]-257:19
produce [1]-132:7
profession [7]-74:14,
74:16, 104:22,
117:5, 138:9,
146:12, 170:15
Professional [1] -
52:10
professional [14] -
12:21, 13:2, 26:22,
47:24, 82:4, 91:1,
91:3, 93:8, 124:19,
137:15, 139:7,
139:9, 139:17,
182:18
professionals [1] -

131:8
program [3]-54:20,
227:11, 235:20
programs [1]-260:17 project [50] - 26:8, 27:23, 30:4, 30:23, 36:19, 48:13, 49:10, 49:15, 49:17, 49:19, 49:24, 50:13, 50:22, 50:24, 56:13, 58:20, 59:25, 60:5, 61:12, 63:9, 76:25, 86:3, 92:15, 96:11, 97:21, 99:5, 101:8, 107:2, 124:14, 128:20, 130:15, 130:24, 140:21, 144:8, 166:9, 167:24, 181:2, 188:14, 190:15, 207:18, 213:6, 218:5, 218:15, 224:10, 230:2, 251:15, 251:21, 263:19, 263:22
projected [1] - 268:17
projecting \([1]\) - 268:20
projects [13]-128:13,
138:4, 179:22,
179:23, 180:4,
180:5, 180:8,
180:20, 181:12,
181:20, 223:14,
223:15, 249:10
prolific [1]-132:11
prone [9]-21:10,
21:16, 73:19, 86:22, 104:14, 106:13, 112:9, 118:24, 251:7
proof [2]-11:11, 260:13
proper [5] - 142:14, 142:16, 223:18, 224:1
properly [26] - 11:15, 17:16, 26:2, 26:4, 26:5, 40:15, 117:6, 128:16, 136:11, 136:12, 136:13, 137:10, 137:19, 143:15, 180:6, 180:9, 180:11, 208:1, 208:5, 208:12, 208:13, 227:9, 247:3, 252:15, 258:6
properties [25] 17:13, 54:17, 82:23, 90:15, 107:8, 107:9, 107:10, 135:22,

136:21, 137:22, 140:18, 144:10, 157:20, 158:1,
161:17, 178:8, 178:10, 178:18, 179:24, 184:3, 184:23, 188:8, 219:12, 257:7,
270:14
property [134]-10:10, 13:15, 13:19, 13:20, 13:24, 14:1, 14:2, 14:5, 16:25, 17:4, 17:13, 18:20, 19:1, 19:13, 21:15, 21:17, 21:21, 21:23, 22:17, 23:5, 23:6, 23:8, 23:12, 23:14, 23:17, 23:21, 23:25, 24:1, 25:19, 25:23, 31:18, 33:1, 33:12, 34:14, 34:19, 35:1, 35:11, 35:15, 35:18, 35:23, 36:3, 36:9, 36:10, 37:7, 37:12, 37:16, 37:18, 38:9, 38:11, 38:20, 38:21, 38:22, 39:3, 39:15, 39:18, 39:19, 45:9, 46:3, 46:5, 51:21, 62:24, 74:15, 74:17, 80:16, 85:8, 85:14, 86:14, 89:9, 89:10, 91:16, 91:23, 94:11, 94:15, 94:16, 94:17, 100:24, 101:3, 101:14, 103:4, 108:8, 108:10, 108:12, 108:14, 108:22, 108:23, 127:11, 143:22, 144:10, 149:25, 150:11, 157:17, 157:21, 157:22, 162:17, 163:3, 164:8, 164:12, 165:13, 166:12, 168:24, 175:18, 175:23, 177:16, 177:17, 178:2, 178:7, 178:13, 178:23, 184:21, 188:10, 188:16, 189:4, 189:5, 190:17, 191:2, 191:23, 200:13, 201:17, 219:14, 222:2, 222:11, 226:16, 229:25, 236:19, 237:9, 248:15, 248:19,

254:19, 258:3,
258:7, 258:22,
259:4, 276:3
PROPERTY \({ }_{[1]}-3: 15\) PROPONENTS \({ }_{[1]}\) 3:4
propose [1]-150:25
proposed [28] - 16:8, 20:16, 54:9, 54:14, 54:21, 82:10, 84:20, 86:15, 87:12, 87:15, 87:25, 88:3, 88:15, 90:25, 116:13, 143:12, 151:19, 159:15, 189:20, 206:16, 231:13, 237:13, 255:22, 270:13, 271:15, 271:20, 272:10
proposing [7]-35:21,
88:10, 172:25, 190:23, 214:5, 234:5, 237:17 protect [7]-91:4, 93:2, 94:1, 105:2, 119:16, 154:14, 187:1
Protection [1] - 82:20 protection [3] 154:16, 186:21, 234:2 protections [1] 92:12
protocol \({ }_{[1]}\) - 48:11
prove [3]-11:14, 162:19, 260:16
proved [1]-11:13
provide [12]-37:11,
47:14, 67:17, 111:7, 125:10, 129:6, 131:11, 152:16, 171:22, 189:13, 200:16, 269:17 provided [7]-94:4, 174:13, 175:11, 183:7, 257:15, 257:20, 263:1
provides [1] - 194:18 providing [3]-44:6, 59:9, 257:25
provision [1]-216:19 proximity [6] - 31:11, 31:17, 33:18, 40:3, 40:19, 41:2
Public [1]-205:4
public [31]-18:2, 89:10, 89:16, 89:20, 89:21, 91:4, 94:1, 94:3, 95:2, 98:10, 98:12, 101:17,

105:2, 108:18,
108:19, 124:14,
124:18, 128:22,
130:4, 154:6, 161:5,
161:6, 161:7,
179:24, 183:10,
186:8, 186:9,
223:16, 252:6,
259:19, 259:21
published [4] -
205:19, 249:6,
249:8, 270:20
publishes [1]-69:11
puddle [1] - 141:3
pull \({ }_{[1]}\) - 190:18
pulling [1]-87:7
pulls [1] - 14:17
pump [1]-229:14
purchase [6] - 94:15,
94:16, 94:17, 188:5, 188:17, 189:3
purchased [6]-23:12,
23:14, 188:16, 188:23, 191:2, 191:23
purchasing [4]13:20, 23:17, 94:21, 189:5
purple [1]-243:22
purpose [1]-125:17
purposes [4]-75:5,
75:8, 75:9, 77:15
pursuant [2]-8:9, 8:24
pursued [1] - 159:3
push [3] - 176:12, 219:11, 271:12
pushing [2]-225:4, 273:11
put [60]-29:15, 35:4, 35:6, 39:5, 50:12, 67:10, 93:8, 102:12, 102:22, 104:13, 114:23, 134:17, 136:17, 139:13, 140:12, 144:21, 150:6, 151:3, 151:14, 153:5, 153:18, 155:13, 155:21, 157:1, 169:3, 171:10, 173:22, 185:23, 191:8, 191:15, 192:1, 192:22, 193:11, 199:14, 202:10, 208:15, 212:10, 212:23, 213:9, 213:25, 214:9, 214:10, 220:3, 236:14,

241:11, 241:20,
247:3, 250:7,
251:12, 254:8,
257:1, 257:21,
261:13, 263:5,
263:9, 263:14,
264:23, 265:7,
267:11, 270:19
puts [1]-40:20
putting [20]-82:8,
102:3, 102:16, 113:20, 116:7, 123:24, 127:10, 131:17, 134:5, 143:23, 173:20, 176:20, 177:1, 177:10, 179:1, 190:21, 217:5, 240:1, 243:4, 263:10 pyrite [1]-98:25
\(\mathbf{Q}\)

Quaker [16] - 6:10, 91:14, 94:5, 132:6, 141:18, 164:16, 165:6, 194:6, 194:17, 194:18, 195:5, 227:16, 236:4, 236:8, 236:11, 270:1
QUAKER [2] - 1:13, 2:13 qualification [1] 129:24
qualifications [1] 9:16
qualified [1] - 12:20
qualitative [1] -
161:11
quality \([3]\) - 253:18,
274:12, 274:19
quantify [2]-117:3, 209:8
quantity \({ }_{[1]}-84: 22\)
quarries [1]-27:10
quarry [2] - 137:7,
244:24
quarter \({ }_{[1]}-63: 22\)
questioning [2] 103:20, 181:22
questions[32]-7:7, 9:25, 19:17, 19:20, 20:18, 21:3, 42:18, 42:21, 46:8, 46:15, 57:23, 60:7, 63:19, 64:10, 76:22, 97:15, 103:15, 104:20, 105:19, 105:24, 147:7, 147:14,

159:1, 174:6,
174:11, 175:10,
175:14, 183:12,
184:2, 207:2,
249:15, 255:5
quick [1] - 226:10
quickly [1]-274:5
quite [8]-81:8, 109:8,
109:9, 165:1,
182:17, 200:23,
212:1, 267:16
quote \([7]-57: 1,77: 6\),
101:19, 101:20, 101:24, 101:25, 155:17
quoted [1] - 267:14
QV [1] - 201:18
QVSD \({ }_{[4]}-5: 2,5: 3\), 5:4, 7:15
R
radially [1] - 207:6 radius [2]-26:8, 260:20
railroad [3]-60:24, 61:1, 89:6
rain [11]-140:25,
145:11, 145:16,
195:18, 195:19,
267:1, 268:19,
268:22, 268:23,
268:24, 274:16
raining [1] - 177:7
rains [2]-129:9, 176:5
rainy \({ }_{[1]}-113: 19\)
raise [5] - 8:11,
145:13, 162:20,
177:20, 183:15
raised [1] - 66:16
ramifications [1] 130:10
rate [1] - 141:10
rather [5]-17:7,
105:19, 172:14, 250:16, 268:1
rating [1] - 149:1
ratio [1]-56:2
re [1] - 265:7
re-vegetate \({ }_{[1]}\) - \(265: 7\)
reach [4]-87:3, 87:4, 156:23, 257:4
reached \({ }_{[1]}\) - 110:17
reaches [1]-82:25
read [15]-21:11, 24:7,
58:3, 58:5, 58:20,
59:2, 59:4, 59:8, 61:5, 61:15, 63:17, 71:20, 78:23,

118:23, 232:5
reading [4]-118:12, 118:13, 199:7, 204:22
readings [2]-64:18, 118:9
ready [2] - 34:9, 102:23
real [5] - 103:4, 189:6, 190:16, 193:12, 244:25
realignment \({ }_{[1]}\) 229:2
really [40]-37:8, 69:23, 72:9, 74:12, 75:8, 76:22, 103:6, 105:10, 106:9, 116:10, 116:13, 122:19, 126:17, 127:7, 132:6, 135:2, 155:3, 169:18, 169:24, 178:22, 179:16, 180:25, 189:25, 191:11, 192:25, 209:7, 222:25, 229:20, 233:1, 234:12, 234:18, 244:6, 244:9, 257:5, 260:13, 261:9, 261:24, 268:2, 269:7, 271:19
rearrange \({ }_{[1]}-24: 16\)
reason [11]-21:20,
58:1, 85:8, 104:20,
106:11, 146:5,
153:17, 170:4,
193:12, 242:17, 270:12
reasonable [1] -
247:23
reasons [1] - 250:20
rebuilding \({ }_{[1]}-229: 7\)
receive \({ }_{[1]}\) - 131:16
recent [1]-231:24
RECESS [3]-63:23,
147:5, 206:1
recommend [10] -
83:22, 93:3, 109:25,
125:20, 129:1, 139:9, 181:2, 188:16, 216:18, 262:25
recommendation [3] 16:1, 125:22, 262:10 recommendations [8]
\(-43: 24,55: 22,58: 6\), 93:7, 93:20, 94:8, 126:12, 181:8 recommended [1] -

16:17
recommending [3] -
111:4, 190:5, 263:10 reconfigure \({ }_{[1]}\) 270:5
reconfigured [1] 143:6
record [17]-11:8, 11:25, 12:16, 29:23, 43:22, 47:23, 77:15, 108:18, 150:7,
154:14, 154:16,
257:13, 257:14,
257:15, 257:22,
277:1, 277:4
RECORD [3] - 68:20,
274:10, 276:24
records [1]-50:18
recross [1]-266:18
red [55]-14:13, 14:23,
15:12, 15:22, 21:10,
45:17, 50:2, 50:4,
50:6, 50:10, 50:24,
51:10, 53:15, 62:8,
72:6, 72:9, 81:10,
110:9, 110:10,
111:10, 132:10,
132:13, 135:12,
149:11, 156:19,
156:20, 160:4,
161:19, 166:4,
204:9, 204:11,
218:18, 243:18,
243:19, 243:20,
243:21, 243:22,
243:25, 244:2,
244:7, 244:8,
244:14, 244:15,
244:18, 244:19,
244:20, 244:22,
245:1, 245:9,
245:13, 245:15,
245:23, 246:9, 249:4
redirect [2] - 174:15, 266:12
redo [1]-260:24
reduce \([3]\) - 127:23, 179:8, 252:1
reduced [7]-112:25,
134:1, 263:7,
263:25, 264:6,
264:10, 278:10
reduces [3]-82:3,
112:2, 179:9
reducing [1]-210:23
reference [2]-92:7,
105:1
referenced \([3]\) - 76:23,
89:14, 89:18
referencing \({ }_{[1]}\) -

100:19
referred \({ }_{[1]}-14: 12\)
referring [2]-42:4, 78:5
regard [6]-20:19, 48:8, 111:19, 111:20, 181:15, 181:17
regarding [18]-8:12, 17:24, 20:25, 21:3, 29:19, 31:1, 36:4, 44:14, 50:13, 50:20, 51:13, 51:18, 51:20, 60:5, 174:13, 175:11, 175:13, 181:23
regardless [2]-181:1, 237:1
regards [1] - 109:7
regimen [3]-117:9,
241:3, 241:4
region [4]-62:8,
89:23, 215:15,
234:12
regions [1] - 132:12
regulated \({ }_{[1]}\) - 136:8
regulation [1]-137:11
regulations [12] -
82:21, 90:6, 93:11,
93:14, 93:16, 105:8,
164:22, 185:15,
186:17, 216:22,
217:3
rehousing [1] - 193:9
rejection [1]-222:21
relate [1]-174:12
related \([9]-17: 6\),
52:6, 158:3, 159:7,
159:8, 159:17,
180:1, 198:8, 199:5
relating [2]-10:21,
154:23
relative [2]-159:13, 161:5
relatively [2] - 45:18, 190:7
release [3]-141:10, 194:19, 266:8
released [1] - 142:16
relevant [2]-51:8, 171:23
relying [2] - 131:4, 241:2
remain [2]-176:24, 189:17
remains [1] - 240:12
remedial [1]-101:7
remediation [3]-61:9,
176:19, 177:22
remember [11] -

59:12, 59:15, 59:19, 66:18, 80:14, 94:19, 110:13, 145:14, 197:6, 242:7, 248:14 removal [2]-28:12, 84:21
remove [29]-15:15,
15:17, 15:20, 27:24,
28:1, 28:23, 29:7,
30:1, 30:5, 86:6,
100:25, 110:21,
111:11, 111:16,
112:9, 116:19,
136:20, 140:7,
148:19, 149:11,
161:16, 214:1,
242:8, 242:15,
242:24, 245:10,
255:23, 261:10,
261:15
removed [10]-15:23, 29:10, 29:20, 84:23,
110:7, 110:11,
110:20, 111:14,
213:25, 262:10
removing [8]-16:4, 28:19, 81:10, 84:3, 240:7, 241:17,
272:20, 273:21
reoriented \({ }_{[1]}-56: 8\)
repeat [4]-52:25,
130:23, 159:9,
159:11
repeatedly [1] 215:12
rephrase [1] - 228:10
replacing [1]-265:1
report [59]-5:6, 7:16,
8:23, 9:22, 9:23,
13:7, 13:10, 14:12,
20:20, 20:23, 21:1,
21:4, 24:6, 24:8,
27:21, 29:21, 43:9,
43:13, 43:24, 44:3,
44:5, 45:11, 45:12,
46:4, 48:8, 48:15,
48:16, 51:4, 51:14,
51:20, 52:16, 58:2,
\(58: 14,58: 17,58: 20\),
58:21, 59:1, 59:2,
59:5, 59:10, 59:11,
59:16, 60:16, 62:11,
62:12, 63:5, 63:12,
99:12, 131:16,
143:17, 157:2,
188:4, 204:8,
204:10, 205:11,
205:14, 232:6,
232:10, 236:3
Report/Phillips [1] -
\(5: 4\)
Reported \([1]-1: 21\)
reported \([3]-61: 8\),
\(237: 5,238: 25\)
Reporter [1]-1:23
REPORTING \({ }_{[1]}-1: 23\)
reports [19]-8:8,
8:12, 8:13, 8:19, 8:21, 58:22, 59:7, 59:20, 59:24, 60:4, 125:13, 125:14, 125:17, 163:14, 170:10, 224:2, 243:16
represent [2]-64:9, 276:7
representations [1] 21:4 representative \({ }_{[1]}\) 114:24
represented \({ }_{[1]}\) 183:11 representing [3] 6:23, 20:15, 174:9
request [1] - 203:4
requested \([1]\) - 10:8 require [12]-35:19, 114:9, 136:6, 150:23, 157:10, 207:22, 209:8, 214:21, 216:22, 217:24, 219:6, 236:15
required [16]-25:15, 25:23, 32:5, 34:8, 35:24, 36:2, 91:2, 136:3, 159:14, 171:11, 172:19, 180:21, 185:20, 205:6, 235:23, 263:5
requirements [6] 108:13, 129:24, 140:23, 205:12, 211:7, 266:9
requires [2]-35:15, 129:5
rerouting [1]-229:24
research [1]-196:12
resembles [1]-198:2
residence [1]-262:4
residential [15]-17:9, 88:4, 89:10, 90:15, 105:15, 147:24, 148:5, 148:24, 149:7, 150:24, 201:3, 201:12, 217:20, 217:24, 270:14
residents [9]-27:3, 88:13, 96:10,

220:22, 252:18,
270:17, 270:22,
272:10, 272:18
residual \({ }_{[2]}\)-112:3, 117:2
resist [1] - 78:9
resistance [1] 116:14
resisting [2] - 78:13, 107:17
resource [1]-212:23
respect \([24]-11: 15\),
21:13, 21:21, 36:1,
37:18, 37:21, 46:5,
48:10, 52:4, 56:6,
83:12, 109:20,
117:10, 130:15,
135:2, 144:15,
149:3, 256:10,
257:8, 257:9, 258:7,
261:5, 262:8, 265:18
responded [1]-46:15
responding [1] -
101:12
response [2]-180:15, 182:12
responsibility \({ }_{[1]}\) 227:12
responsible [5] 91:25, 92:2, 92:4, 126:1, 126:2
rest \([4]\) - 96:9, 196:25, 228:8, 272:1
Restauri [2] - 4:8, 4:16
RESTAURI [108] -
2:10, 6:15, 7:2, 7:8,
7:18, 8:18, 9:6, 9:12, 9:15, 10:4, 10:25, 11:5, 12:3, 12:7, 18:5, 18:11, 18:17, 19:19, 19:23, 34:12, 42:14, 42:16, 42:25, 43:11, 43:19, 46:12, 46:16, 46:24, 47:4, 63:20, 63:24, 76:8, 103:18, 104:2, 104:7, 105:22, 106:7, 121:11, 123:6, 123:10, 126:13, 127:13, 128:4, 130:5, 130:12, 130:14, 132:3, 133:13, 135:18, 137:13, 137:25, 138:19, 139:3, 140:1, 140:16, 144:12, 144:16, 145:2, 145:13, 145:25, 146:9, 146:12,

146:14, 146:21,
147:3, 147:6, 154:9, 154:20, 156:4, 158:21, 159:4,
174:4, 174:14,
174:19, 174:23,
175:1, 182:8, 183:9,
205:22, 206:2,
224:8, 226:8,
230:20, 230:24,
249:13, 255:4,
255:8, 258:11,
261:4, 261:12,
261:18, 261:22,
262:7, 262:18,
263:16, 264:8,
264:12, 264:17,
264:21, 265:15,
265:23, 266:10,
266:15, 266:18,
266:21, 274:9,
276:21, 276:25
restrict \([1]\) - \(211: 17\)
restrictions [1] 198:20
result [8]-39:23, 61:1, 70:3, 70:24, 72:12, 178:8, 180:9, 273:7
resulted [1] - 246:10
results [1]-115:5
resume [4]-7:13,
43:13, 63:21
Resume/Geoffrey \({ }_{[1]}\) -5:2
Resume/Joseph [1] 5:3
resumes [3]-8:19, 8:20, 9:10
retain [1]-230:15
retaining [15] -
110:24, 110:25,
111:9, 116:4, 116:5,
116:7, 116:8,
116:12, 116:18,
116:22, 116:25,
134:18, 135:8,
152:9, 172:9
retention [8]-141:2,
226:17, 226:19,
250:13, 253:18,
269:22, 274:12,
274:17
return [1] - 276:18
returned [1]-61:13
reusable [1]-242:11 reuse [4]-192:5, 243:8, 244:12, 247:1
reused [1] - 242:13
revealed \({ }_{[1]}-232: 7\)
\begin{tabular}{ll}
review \([25]-8: 17\), & 141:8, 141:18, \\
44:5, 45:10, 48:13, & \(141: 21,153: 8\), \\
\(49: 23,63: 5,93: 15\), & \(153: 9,158: 15\), \\
\(94: 12,98: 2,124: 7\), & \(162: 12,177: 25\), \\
124:9, 124:20, & \(189: 23,194: 14\), \\
131:19, 131:20, & \(206: 9,207: 11\), \\
132:1, 132:20, & \(207: 13,207: 19\), \\
\(139: 12,139: 13\), & \(211: 6,212: 19\), \\
\(157: 11,157: 12\), & \(214: 21,215: 10\), \\
\(160: 10,205: 10\), & \(229: 12,239: 22\) \\
\(224: 1,224: 2\) & road \([67]-18: 23\),
\end{tabular}
reviewed \([4]-98: 1, \quad\) 19:12, \(36: 5,57: 10\),
 130:1, 183:2, 230:15
revising [1]-205:18
rided \({ }_{[1]}\) - 170:23
ridge [12]-21:8,
 22:22, 24:8, 56:15,
 120:20, 122:6,
 122:7, 151:8, 151:9,
 231:10, 237:18,
 243:19
ridges [1] - 197:21
rip [1] - 24:20
rise [1] - 226:3
rises [1] - 115:20
risk [35]-104:12,
 104:13, 104:23,
 105:1, 105:9,
 105:11, 111:22,
 112:3, 117:2,
 121:15, 121:17,
 123:9, 124:22,
 132:8, 133:7,
 144:13, 145:1,
 145:5, 146:16,
 150:25, 161:5,
 178:12, 178:16,
 180:6, 185:5,
 185:10, 185:12,
 186:12, 186:13,
 200:1, 220:15,
 221:14, 224:5,
 255:20
risks [5] - 135:15,
 156:14, 159:15,
 179:25, 216:17
River [10]-60:23,
 60:25, 61:2, 142:4,
 224:22, 224:24,
 225:1, 225:4, 225:6,
 267:21
river \([7]-86: 17\),
 86:19, 87:20,
 132:12, 132:18,
 221:7, 267:25
Rivers [1] - 101:11
Road [31] - 18:3,
 19:14, 23:8, 28:5,
 88:13, 95:6, 95:16,
 96:1, 96:19, 120:17,

141:8, 141:18,
141:21, 153:8,
153:9, 158:15,
189:23, 194:14,
206:9, 207:11,
207:13, 207:19,
214:21, 215:10,
229:12, 239:22
19:12, 36:5, 57:10,
57:12, 57:14, 57:16,
80:14, 80:15, 83:13,
83:14, 83:19, 83:24,
83:25, 84:9, 85:15,
95:3, 95:5, 95:8,
96:17, 97:3, 120:19,
153:10, 153:15,
153:16, 166:18,
166:25, 189:12,
195:10, 196:2,
199:6, 205:5, 208:6,
208:19, 209:14,
210:4, 210:7,
210:20, 210:23,
210:24, 211:6,
212:12, 213:9,
213:13, 215:7,
215:23, 216:11,
216:12, 216:18,
217:2, 217:8,
217:12, 220:12,
220:13, 221:16,
228:19, 229:3,
229:4, 229:18,
229:19, 229:23,
229:24, 230:16,
237:24, 258:15,
268:8
roads [10]-18:2, 33:14, 34:7, 89:10,
96:18, 134:22,
151:8, 215:9,
217:25, 228:23
roadway [12]-61:1,
200:16, 208:10, 209:2, 209:3, 209:23, 210:12, 210:14, 210:16, 211:3, 213:11, 213:13
roadways [5] - 55:23,
55:25, 57:6, 209:24
rock [47]-15:18, 22:4, 22:5, 22:23, 27:10, 29:14, 33:4, 64:23,
72:10, 72:11, 79:14,
79:19, 79:20, 99:15,
99:22, 100:1, 100:7,

100:10, 100:25,
119:2, 119:3,
120:22, 121:19,
122:7, 122:11,
136:13, 136:21,
137:2, 137:8, 138:7,
138:11, 138:15,
138:18, 140:5,
144:4, 156:22,
173:14, 232:16,
232:17, 232:18,
232:21, 233:7,
233:8, 242:25,
246:19, 250:24
rocks [1] - 242:20
\(\operatorname{rod}[1]\) - 170:21
role [1] - 152:13
room [3]-183:15,
253:1, 254:16
root [1] - 265:17
roots [1]-261:15
rough [2]-196:18, 247:17
roughly [5] - 65:10,
78:17, 111:13,
238:22, 239:23
row [1] - 55:6
run [14]-41:15, 54:20,
56:9, 57:15, 68:25,
115:4, 138:25,
151:8, 179:25,
187:6, 200:3,
204:14, 208:22, 225:17
running [10] - 18:10,
20:6, 41:20, 43:7,
81:3, 113:7, 137:9,
141:19, 177:8,
210:20
runoff \([8]-90: 6,90: 9\),
161:13, 177:2,
177:3, 177:25,
265:18, 266:2
runs [2]-18:24, 95:22
Rutter \({ }_{[1]}\) - 2:14
\begin{tabular}{c}
S \\
\hline
\end{tabular}
sad [1] - 149:14
safe [10]-11:14,
36:12, 38:12, 53:18,
53:21, 55:1, 97:3, 124:18, 186:15,
187:6
safeguarding \({ }_{[1]}\) 93:21
safeguards [2]-93:1, 93:8
safely [8]-15:12,
16:2, 16:3, 16:18,

17:18, 38:13, 38:15,
194:4
safer [1] - 200:9
safety [42]-14:19,
16:21, 30:13, 54:21,
73:22, 75:5, 75:8,
75:11, 75:21, 78:6,
78:8, 78:14, 78:15,
84:12, 90:1, 90:3,
94:3, 106:8, 106:11,
107:3, 107:13,
107:16, 107:19,
109:13, 116:16,
116:23, 128:22,
161:5, 161:12,
171:10, 172:19,
176:21, 176:23,
185:16, 186:6,
187:7, 187:25,
199:20, 200:6,
200:12, 235:21, 274:6
sake [1] - 112:5
salted [1]-227:7
samples [2]-127:24, 128:3
sand \([1]-65: 15\)
sandstone \([33]-21: 9\),
24:9, 24:11, 24:15,
24:17, 24:19, 25:1,
29:14, 56:16, 64:21,
64:25, 65:10, 65:11,
65:14, 65:17, 65:19,
66:7, 66:21, 67:1,
70:12, 72:2, 98:16,
99:1, 119:13, 173:6,
188:20, 231:10,
231:19, 233:16,
243:17, 243:19
sanitary [5] -95:21,
121:2, 121:4, 227:22
sat [1]-269:11
satisfaction [1] -
166:10
satisfy [1] - 189:13
saturated \([5]-75: 16\),
75:20, 80:22,
112:24, 113:3
saturates [1]-82:3
save [1] - 7:10
saw [6] - 160:17,
161:8, 196:7,
231:24, 252:21,
270:21
sawtooth [1]-16:14
scale [1]-69:13
scattering [1] - 56:19
scenario [2]-89:8,
196:22
schematic [1]-81:6

SCHOOL \({ }_{[2]}-1: 13\), 2:13
School \([7]\) - 6:10, 94:5, 132:7, 168:15, 236:5, 236:9, 236:11
school \({ }_{[162]}-7: 3\), 8:18, 11:4, 11:9, 13:18, 14:4, 14:8, 14:10, 15:8, 16:1, 16:3, 16:25, 17:10, 23:11, 23:13, 23:16, 23:19, 33:14, 34:6, 35:14, 35:19, 35:21, 36:3, 37:21, 37:22, 37:25, 38:3, 38:24, 39:7, 39:9, 47:5, 50:14, 62:24, 66:19, 74:10, 94:18, 96:13, 96:24, 104:13, 104:23, 105:14, 111:23, 118:19, 119:7, 119:10, 119:15, 119:23, 120:5, 124:15, 124:24, 125:6, 132:2, 132:19, 135:13, 145:4, 147:18, 147:22, 148:6, 148:17, 151:1, 151:16, 151:20, 153:3, 153:12, 153:19, 153:20, 153:22, 153:23, 154:2, 154:5, 154:6, 155:1, 155:2, 155:3, 155:9, 155:11, 156:12, 156:13, 156:15, 158:3, 158:6, 158:15, 159:17, 159:20, 160:18, 162:3, 162:10, 166:23, 167:4, 168:2, 168:17, 170:9, 171:16, 171:19, 178:11, 184:17, 184:20, 184:21, 185:2, 188:6, 188:11, 188:25, 190:6, 190:16, 190:20, 191:10, 191:12, 191:14, 191:22, 191:24, 192:1, 192:5, 192:9, 192:11, 192:18, 193:6, 193:8, 197:16, 200:17, 203:19, 204:1, 206:20, 206:21, 206:24, 213:6,

214:25, 215:9, 216:24, 217:12, 217:18, 217:23, 218:1, 218:3, 218:16, 219:18, 220:1, 220:4, 221:13, 221:23, 226:20, 227:12, 227:19, 228:6, 228:14, 228:25, 229:2, 229:7, 229:25, 230:21, 231:14, 231:16, 236:24, 248:7, 251:20, 252:6, 252:25, 257:17, 260:8, 270:21
schools [8]-147:21, 153:25, 156:18, 168:16, 215:6, 215:14, 215:17, 216:9
science [2] - 144:23, 170:18
scope [8]-18:6,
104:10, 150:4,
150:9, 158:18,
181:24, 182:6,
203:18
score [3] - 175:19,
176:11, 177:16
Scrabbit [3]-157:21,
248:24, 248:25
scrape \({ }^{[1]}\) - 137:3
screen [1]-274:2
screw [2]-68:7, 75:12
seamans \([1]-3: 10\)
season [1]-113:19
seat \({ }_{[1]}-197: 14\)
second [9]-21:5,
27:21, 42:15,
117:12, 126:9, 135:19, 177:12,
182:17, 206:12
secondary [2] - 83:25, 237:24
section [9]-16:13, 55:6, 55:7, 55:9,
101:4, 211:2,
246:16, 246:18
sections [2] - 54:11, 83:18
security [1]-116:5
sediment \({ }_{[1]}\) - 141:4
sedimentary [3] -
72:10, 245:16, 245:18
sediments [3]-
142:21, 227:5, 270:7
see [50] - 16:6, 16:8,

18:21, 25:12, 26:16,
27:9, 54:22, 72:23,
76:23, 83:7, 92:11,
102:20, 108:16,
117:7, 118:14,
118:15, 118:16,
119:24, 122:10,
126:21, 127:21,
128:1, 136:11,
136:23, 137:6,
138:16, 145:21,
151:12, 152:12,
153:7, 153:10,
169:6, 183:6,
183:16, 191:14,
209:5, 212:2, 231:8,
231:25, 233:3,
236:24, 238:22,
239:8, 248:3,
252:10, 257:5,
271:10, 273:1
seeing [3] - 113:20,
126:4, 150:20
seeks [1]-66:10
seem [2]-241:13,
247:23
seemingly \({ }_{[1]}-132: 23\)
seeping [1] - 81:18
seeps \([1]-81: 2\)
seismic [2]-235:14, 256:12
seismographs [5] -
83:5, 92:20, 139:22,
139:24, 208:5
select [1]-252:8
selected [5]-23:18,
74:15, 74:16, 132:8, 248:20
send [1]-131:21
senior [1]-223:3
sense [5] - 43:5,
46:18, 88:2, 89:2, 263:15
sensitivity \([1]-87: 8\)
sent [1]-131:18
sentence [5]-21:6,
24:7, 27:22, 30:4, 61:7
separate [7]-22:15,
46:21, 46:25, 49:11, 49:18, 197:13, 216:20
September [3]-60:18, 276:13, 276:14
sequence [1] - 147:15
seriously [1]-189:2
serving [2]-158:6, 159:20
session [2]-276:13, 276:15
set \([6]\) - 16:14, 20:19 20:25, 128:19, 136:22, 267:13
sets [1]-20:18
settle [1]-141:4
settled [1] - 45:22
settlement [1]-40:12
seventies \({ }_{[1]}\) - 126:25
seventy \(\left.{ }_{[1]}\right]-65: 11\)
several \({ }_{[14]}\) - 13:3, 20:15, 55:5, 64:9, 102:3, 102:8, 126:19, 131:15, 135:24, 137:1, 149:6, 152:20, 158:1, 212:18
severe \({ }_{[1]}\) - 101:6 sewer [6] - 95:21, 169:15, 170:4, 227:16, 227:23, 227:24
Sewickley [14]-2:16, 18:23, 18:25, 19:1, 19:4, 19:12, 96:18, 96:20, 142:3, 162:18, 222:3, 224:22, 224:25, 225:5
shaft \({ }_{[1]}\) - 119:19 shaking [1]-251:5 shale [12]-72:8, 72:9, 72:15, 72:23, 73:4, 73:18, 74:2, 74:3, 244:3, 244:19
shallower [1] - 32:16
share \({ }_{[2]}-64: 14\), 249:9
shaved [1]-223:12
shear [11]-82:3, 112:14, 112:24, 114:8, 114:13, 179:9, 208:25, 240:12, 243:3, 243:6, 244:10
sheds [1]-142:8
shift [2]-132:3, 135:18
shifting \({ }_{[1]}-128: 5\)
shock [2]-207:4, 208:19
shook [1] - 26:15
shopping [1]-226:5
shore [2]-72:22, 186:1
shoring [2]-185:24, 186:19 short [1]-60:25 shorter [3]-103:23, 204:18, 246:14 shot \({ }_{[1]}-140: 9\)
shovel [1] - 244:23 show [4]-100:5, 115:16, 137:7, 273:6
showed [1] - 234:9 showing [3]-122:17, 140:24, 152:8 shown [10]-13:15,
17:21, 32:12, 85:10, 101:9, 157:3, 189:22, 199:1, 201:15, 211:25
shows [6]-69:1,
69:11, 118:15, 168:25, 201:19, 203:13
shrunk [3]-262:21,
262:22, 262:23
shut [2] - 96:6, 96:7
side [31] - 18:24, 22:9, 90:2, 124:5, 124:7, 124:19, 131:2, 134:19, 153:8, 153:9, 153:11, 153:12, 153:15, 153:16, 158:14, 165:3, 166:15, 166:16, 195:10, 197:11, 197:24, 198:1, 198:2, 198:17, 198:18, 207:12, 215:25, 216:2, 223:21, 223:25, 235:7
sides [5] - 70:20, 72:4, 124:5, 135:14, 224:5
signaling \({ }_{[1]}-257: 18\)
significance \({ }_{[1]}\) - 86:2
significant [11] - 32:3,
35:15, 35:20, 35:22, 102:25, 161:20, 195:4, 204:2, 232:8, 236:16, 269:5
signs [1] - 201:16 silt [2]-244:20, 244:21
similar \([14]-45: 3\), 45:9, 52:1, 61:19, 61:23, 62:7, 62:13, 62:25, 102:19, 149:3, 160:13, 161:23, 184:8, 206:21
simple [3]-75:15, 160:15, 206:15
single [9]-17:9, 51:1, 52:14, 95:25, 96:16, 113:7, 160:5, 220:13
sink [4] - 168:20, 169:17, 169:24, 170:5
sister \({ }_{[1]}\) - 198:5 sit [12]-25:17, 27:13, 29:18, 31:9, 32:7, 33:16, 38:10, 38:18, 58:1, 61:22, 62:22, 105:23
site [187]-10:24,
11:16, 11:18, 13:4,
13:10, 13:17, 16:2,
16:4, 16:6, 16:18,
16:20, 16:24, 17:2,
17:7, 17:8, 17:18,
17:25, 18:1, 22:13,
22:19, 23:2, 23:19,
26:14, 27:9, 27:14,
29:7, 29:13, 30:3,
30:10, 31:2, 31:5,
31:11, 31:14, 31:19,
32:13, 32:14, 33:18, 33:22, 34:5, 36:13, 36:21, 40:4, 40:19,
41:2, 41:19, 42:2,
44:7, 44:8, 44:14,
49:4, 49:5, 51:3,
51:4, 52:4, 52:14,
52:17, 53:8, 53:11,
53:19, 53:21, 55:1,
60:20, 61:12, 62:6,
62:7, 64:17, 65:9,
68:24, 69:9, 82:24,
83:5, 88:24, 89:3,
89:19, 90:10, 90:12,
90:13, 92:13, 92:22, 92:24, 94:21, 98:16,
100:14, 100:18,
101:9, 101:14,
101:19, 102:2,
102:5, 102:7,
102:11, 102:13,
102:17, 109:24,
110:3, 110:7, 110:8,
111:13, 111:15,
114:18, 119:12,
120:18, 132:8,
133:21, 139:19,
140:23, 144:11,
147:17, 147:19,
147:24, 148:4,
148:16, 148:20,
150:25, 151:1,
151:4, 151:17,
151:19, 152:22,
153:3, 156:12,
156:14, 156:15,
157:2, 157:7, 158:2, 159:16, 159:17, 160:7, 160:12, 160:17, 160:18, 160:21, 161:10, 161:20, 162:2, 162:5, 162:6, 166:8,

169:5, 169:25,
184:6, 185:6, 186:7,
188:5, 189:12,
189:21, 190:23, 192:17, 193:15,
196:20, 197:15,
201:18, 202:22,
202:23, 203:10,
204:17, 207:1,
207:12, 211:11, 216:24, 217:22, 218:13, 221:21, 222:21, 236:6, 236:7, 236:15, 236:17, 237:11, 242:3, 242:12, 242:16, 247:10, 247:21, 247:24, 248:5, 248:25, 249:1, 249:2, 252:21, 255:23, 259:9, 259:11, 263:4, 269:16, 271:20
sites [25]-23:18,
49:18, 52:18, 53:14, 93:6, 102:3, 146:5,
157:12, 158:11, 160:2, 160:4, 160:8, 160:15, 161:8, 161:10, 161:15,
161:22, 161:24,
187:2, 205:13,
248:4, 248:9,
248:21, 249:5
sits [1] - 73:4
sitting [2] - 56:18, 252:3
situation [17]-58:25, 62:3, 75:12, 97:24,
102:1, 129:2,
156:19, 160:18,
170:3, 192:10,
211:2, 215:12,
217:6, 217:12,
259:1, 267:9, 267:20
situations [3]-67:15,
125:2, 228:13
\(\boldsymbol{s i x}\) [9] - 114:16,
117:11, 137:2,
156:24, 194:18,
197:9, 274:19,
274:20, 275:3
Sixth [1] - 3:6
size [5]-28:24, 66:2, 223:15, 263:25,
264:10
sized [1]-251:21
ski \({ }_{[1]}\) - 19:9
Slagle [1] - 97:12
slanderous [1] - 150:1
sled [1]-170:23
sleep [1] - 184:19
slices \({ }_{[1]}\) - 126:22
slid \([7]-15: 1,15: 21\),
23:1, 70:17, 173:12,
202:14, 246:21
slide [15] - 49:3, 73:22, 74:2, 74:3, 110:4, 120:1, 120:2, 121:21, 121:23, 122:20, 170:11, 170:22, 201:15, 201:16, 212:16
slides [5]-70:21, 73:20, 131:10, 149:18, 212:24
sliding \([7]\) - 24:5, 71:18, 71:21, 80:12, 201:20, 212:7, 271:1
slipped [1] - 165:3
slippery [2]-73:14, 73:17
slope [159]-14:18, 14:22, 16:10, 16:12, 16:15, 19:9, 29:16, 30:11, 54:20, 55:14, 56:8, 56:9, 57:10, 57:14, 57:15, 57:18, 61:13, 70:22, 75:4, 75:22, 78:7, 78:9, 78:11, 78:13, 80:5, 82:2, 84:11, 85:25, 86:1, 86:4, 86:5, 86:11, 86:13, 86:20, 87:3, 87:9, 87:13, 87:14, 87:16, 87:18, 87:19, 87:20, 87:25, 88:3, 88:10, 88:16, 89:7, 95:8, 104:24, 105:12, 106:24,
107:1, 107:10,
107:17, 107:20,
107:23, 107:25,
108:4, 109:4, 109:6,
109:10, 109:17,
111:5, 112:24,
114:10, 115:15,
115:18, 115:22,
116:3, 116:10,
116:13, 116:15,
117:7, 117:25,
118:17, 122:14,
122:23, 126:23,
130:19, 134:13,
134:23, 152:5,
175:12, 177:3,
178:20, 178:25,
179:2, 179:5, 179:8,
180:2, 181:7,

181:15, 184:6, 184:11, 184:24, 186:1, 186:22, 187:6, 187:13, 187:17, 198:12, 198:13, 199:9, 199:12, 199:13, 199:15, 199:24, 200:4, 200:5, 200:6, 200:9, 200:10, 200:14, 200:19, 200:22, 200:23, 201:17, 210:7, 210:22, 210:24, 234:9, 235:6, 235:13, 235:22, 235:24, 238:11, 238:13, 238:19, 238:20, 239:16, 239:18, 245:25, 246:11, 250:4, 251:25, 252:18, 252:20, 252:22, 256:11, 256:14, 256:17, 257:7, 263:11, 264:4, 264:5, 266:7, 271:13, 271:18, 271:19, 272:10, 272:19, 273:4, 273:14, 273:17, 274:25, 276:2
slopes [55]-16:7, 33:15, 45:23, 55:18, 56:7, 67:10, 69:16, 85:15, 86:15, 86:16, 87:22, 87:24, 90:3, 90:25, 107:3, 107:4, 125:11, 133:24, 134:24, 135:1, 135:6, 135:9, 143:11, 151:18, 151:20, 177:8, 177:11, 178:15, 178:23, 179:11, 185:21, 186:8, 187:4, 187:10, 187:22, 197:19, 198:3, 234:11, 235:6, 237:10, 237:15, 237:22, 239:1, 239:4, 239:5, 241:12, 259:6, 261:16, 262:3, 262:25, 263:24, 264:2, 265:7 sloughed [1] - 151:11 sloughs [2]-80:11, 176:13
SLOUGHS \(_{[1]}-80: 11\)
slow [1] - 270:6
slowly [1] - 246:4
slows [1] - 143:3
slumps [1] - 80:10
small [3]-216:2, 223:10, 274:8
smaller [6] - 87:22,
196:20, 235:3, 263:19, 265:5, 265:16
smell [1] - 121:2
smooth [1] - 143:7
snow [1] - 177:7
soccer [2]-216:10, 221:6
social [1] - 6:13
Society [1] - 52:10
soft [3]-65:21, 65:24, 133:4
software [10]-54:14,
75:17, 75:24, 76:1,
76:2, 126:14,
126:15, 144:21,
235:13, 256:15
soil [55] - 15:14,
27:24, 28:2, 28:13,
28:20, 28:23, 29:8,
29:10, 29:20, 30:1, 30:5, 45:16, 45:17, 51:8, 64:22, 65:8,
70:12, 71:2, 72:3,
79:21, 81:4, 99:25, 110:6, 110:22, 115:9, 119:1, 119:6, 119:9, 121:24, 129:6, 133:4, 136:16, 140:12, 173:10, 177:9, 196:24, 199:8, 204:9, 241:24, 242:9, 243:4, 243:10, 243:14, 243:24, 243:25, 245:1, 245:24, 246:2, 246:3, 246:7, 246:8, 246:9, 250:21, 261:10
soils [40]-13:22, 14:12, 14:18, 14:19, 14:21, 15:9, 15:12, 15:23, 16:5, 33:3, 40:14, 54:18, 70:17, 75:16, 75:20, 80:22, 81:10, 111:10, 111:17, 129:11, 137:23, 148:19, 149:11, 169:17, 173:11, 173:12, 179:10, 213:25, 214:2, 214:4,

241:17, 242:6,
242:8, 242:10,
242:18, 242:20,
244:8, 245:9, 245:15
sold [1] - 218:8
solicitor [2]-6:14, 8:23
solid [1] - 16:15
Soman [3]-2:5, 4:9, 164:5
SOMAN [8] - 164:4, 166:4, 166:11, 168:6, 170:7,
170:21, 171:1, 172:3
sometimes [6] -
119:4, 129:8, 176:7,
187:16, 221:8,
243:23
somewhat [2] -
124:10, 256:3
somewhere \([7]\) -
158:8, 159:23,
159:25, 194:22,
206:22, 221:24,
247:21
son [1] - 193:7
sons [1]-216:10
sorry [6] - 57:25,
63:14, 206:25,
224:7, 225:22,
257:23
sort [14]-16:12, 88:21, 103:10, 119:25, 133:6, 143:23, 166:21, 176:1, 176:16,
180:9, 180:22,
222:22, 223:8,
271:24
sorta [1] - 124:11
sorts [1]-88:19
Soster [3]-2:5, 4:9, 147:7
SOSTER [22] - 6:4,
6:8, 103:25, 104:3,
147:1, 147:11, 150:21, 154:22, 156:5, 159:6, 159:13, 160:14, 163:24, 172:6, 172:14, 172:22, 173:1, 224:20, 224:25, 225:8, 226:4, 276:11
sound [1] - 235:19
sounded [1] - 181:13
sounds [1]-241:23
source [3] - 95:25,
96:16, 144:2
sources [1]-151:5

South [2]-3:16, 157:15
south [2]-197:24, 198:17 southeast [2]-17:25, 202:9
southern [1]-59:14
Southwest [2] 106:14, 106:17
Southwestern [6] 50:4, 52:7, 52:15, 53:2, 53:9, 53:15 southwestern [4] 53:3, 69:18, 89:23, 102:20
SP-3 [2]-13:16, 17:21
space [3]-200:14,
200:15, 200:19
spaced [1]-23:3
spacing [1] \(-32: 13\)
spans [1] - 229:5
speaking [2] - 167:2, 206:19
SPECIAL [1]-1:11
special [13]-37:23,
38:1, 118:3, 118:6,
152:21, 153:2,
153:13, 153:18,
154:3, 154:25, 156:8, 188:25, 202:20
specially [1] - 118:8
specific [15]-10:22, 30:14, 30:15, 33:4, 48:16, 52:17, 56:24, 57:6, 59:18, 69:9, 89:25, 93:1, 93:20, 233:20, 259:22
specifically \([7]\) 29:19, 48:10, 49:17, 58:16, 69:13, 155:24, 186:23
specification [2] 129:5, 269:16 specifications [10]27:2, 54:1, 92:15, 93:18, 125:13, 125:17, 129:13, 129:14, 129:23, 129:25
specifics [2]-29:25, 44:13
specified \([1]\) - 94:8
speculative \({ }_{[1]}\) 149:21
spend [11] - 100:11, 100:15, 100:17, 101:2, 102:8, 103:1, 103:11, 148:10, 149:17, 149:25,

228:17
spending [3]-116:16, 160:20, 160:24
spent \({ }_{[1]}-109: 15\)
spill [2]-196:16,
275:12
sports [1]-190:19
spot [1]-133:17
spots [2]-201:19, 202:9
spread [1]-207:6
springs [8]-81:2, 81:3, 113:20, 143:18, 143:19, 162:9, 218:19, 232:8
Spur [4]-19:14, 80:16, 80:17, 189:11 spurs [1]-96:2
square [2]-52:22, 203:23
squeezed [1] - 113:2
stability [38] - 54:20,
55:10, 55:15, 56:9, 57:10, 57:15, 57:16, 57:18, 79:4, 90:25, 107:1, 108:4, 109:10, 109:17, 110:19, 114:10, 133:11, 134:6, 135:2, 177:16, 178:2, 178:25, 179:9, 187:6, 199:19, 199:23, 200:4, 210:4, 210:6, 210:23, 211:23, 235:14, 235:24, 244:7, 250:21, 256:11, 264:4, 273:8 stabilize [12]-56:10, 59:17, 83:24, 84:14, 84:17, 111:4, 116:11, 134:24, 135:9, 210:17, 259:7, 263:11
stable [39]-15:24,
16:11, 16:18, 16:19,
16:20, 29:17, 30:12,
53:19, 54:23, 74:17,
77:11, 78:19, 81:12, 81:13, 110:16, 111:7, 111:18, 116:2, 125:10, 134:8, 176:3, 176:17, 177:5, 177:11, 177:19, 187:22, 199:6, 199:13, 199:22, 210:18, 255:25, 256:1, 256:4, 263:13, 271:18,

272:13, 272:19
stadium [8] - 162:13, 190:19, 215:19, 219:10, 219:20, 222:5, 262:14, 267:23
staff [2] - 142:10, 223:24
stage [5] - 24:24, 33:25, 57:8, 62:1, 172:7
stages [3]-28:4, 36:24, 230:12
stair [6]-81:12, 81:14, 112:20, 113:6, 239:5, 240:17
staircase [1] - 16:15
staircases [1] - 16:14
stakeholder [1] 97:22
stakeholders [3] 97:21, 228:11
stamped [1] - 156:9
stand [1] - 123:22
standard [30]-11:12, 52:9, 54:23, 90:23, 91:2, 104:21, 105:4, 105:5, 106:9, 106:16, 106:19, 106:20, 106:24, 125:22, 126:15, 146:9, 180:23, 180:25, 181:1, 181:2, 181:18, 182:13, 182:15, 182:22, 183:3, 196:4, 199:8, 200:23, 241:8, 267:6
standards [6] - 93:25, 186:10, 196:1, 196:10, 213:18, 267:18
standing [1] - 123:23 standpoint [2] -
216:16, 236:23
start [9]-9:12, 29:16, 31:12, 103:20, 183:17, 187:16, 191:4, 207:20, 250:22
started [8] - 7:24,
12:1, 30:9, 164:22,
190:15, 214:3,
215:13, 241:9
starting [1] - 129:17
starts [1] - 169:5
State [1] - 13:2
state [17]-12:15,
36:8, 36:9, 47:22,
84:8, 89:6, 93:11,

145:2, 149:14, 164:21, 176:17, 211:19, 216:22,
217:3, 232:9,
242:23, 243:13
statement [3] -
150:19, 182:19, 236:14
States [4]-52:24, 53:5, 59:14, 106:10
states [3]-13:3, 77:6, 105:6
static [1]-81:4
stating [2] - 148:16, 158:11
station [1] - 105:14
statistical [2] -
107:15, 209:6
statistically [1] -
208:21
stay [6] - 86:11, 132:4,
234:14, 259:13,
274:24
staying [1] - 189:19
Steel [1] - 3:11
steel [2] - 155:8, 171:4
steep [11] - 19:6,
19:10, 99:24, 119:4,
170:23, 197:19,
197:23, 235:5,
235:6, 237:12,
260:16
steeper [3] - 197:23, 200:25, 238:14
steepest [1] - 237:22
stenographic [1] 278:8
step [5] - 68:6, 81:12, 82:5, 112:20, 113:6
stepped [5] - 151:23,
151:25, 152:2,
152:6, 239:5
steps [6] - 81:14,
180:1, 180:17,
181:16, 220:11, 240:17
stepsisters [1] - 198:6
sticking [1] - 221:19
still [22] - 24:23, 41:4,
57:11, 90:18, 91:7, 96:9, 98:21, 99:8, 99:17, 103:11, 119:17, 133:7, 134:1, 168:4, 191:6, 201:14, 213:12, 220:12, 251:22, 251:23, 255:17, 255:18
stilts [1] - 119:25
stipulate [3] - 43:17,

104:25, 216:25
stipulated [1] - 155:14 stipulation [1] - 14:3
stone [8]-60:22, 72:6, 72:9, 169:1, 240:24, 244:20, 244:21, 245:5 stop [1] - 104:17
stopping [1] - 60:25
store [1] - 138:6
storm [66] - 141:6,
141:13, 143:25,
145:20, 145:21,
145:22, 145:23,
146:1, 146:2, 146:4,
163:22, 164:23,
165:11, 177:1,
177:3, 177:10,
177:12, 177:22,
178:21, 180:2,
193:16, 195:14,
195:21, 195:22,
195:23, 195:24,
210:2, 210:8,
210:19, 226:17,
226:18, 226:23,
226:25, 253:24,
253:25, 254:7,
254:9, 255:21,
255:23, 256:19,
256:20, 256:22,
257:2, 257:4, 257:9,
258:8, 266:3,
267:13, 267:15,
267:16, 268:3,
268:7, 268:12,
268:18, 268:24,
269:8, 269:13,
269:17, 269:24,
274:23, 275:5,
275:8, 275:15
storms [6] - 145:10,
195:25, 196:15,
269:5, 275:9
straight \([4]-28: 8\), \(70: 15,166: 14,273: 9\) strata [11]-50:2, 50:4, 50:7, 50:10, 127:12, 132:10, 160:5, 243:22, 244:1, 245:8, 245:15
street [5] - 216:1, 216:2, 217:20, 221:12
Street \([4]-3: 11,3: 16\), 203:12, 204:11
strength [14] - 82:3,
112:15, 112:25,
113:4, 114:9, 114:11, 114:14,

179:10, 240:13,
243:3, 243:6,
244:11, 245:3
strictly [1] - 257:9
strike [4]-34:10, 38:4, 61:19, 154:18
strikes [1] - 275:24
strong [4]-72:17,
72:18, 73:5, 73:6
structural [1] - 83:2
structure [3] - 88:5,
214:8, 225:14
structures [3] -
208:10, 209:3, 227:3
students [3] - 159:20,
190:2, 220:3
study [1] - 192:6
stuff [22] - 54:4, 59:22,
70:17, 97:8, 98:7,
124:9, 165:18,
190:11, 197:16,
197:17, 199:11,
202:5, 205:1,
212:10, 218:2,
227:5, 228:23,
250:24, 251:1, 252:3, 260:2, 265:7
stumps [1] - 22:10
sub [3]-47:8, 55:10, 200:4
sub-consultant [1] 47:8
sub-stability [2] 55:10, 200:4 subdivision [2] -
19:15, 97:15
subgrade [1] - 55:24
subgrades [1] - 209:3
subject [1] - 46:3
subjected [1] - 55:10
submission [4]-
45:12, 48:7, 51:14, 51:20
submitted [16] - 7:21, 8:1, 8:3, 8:9, 8:14,
\(8: 15,8: 19,8: 24,9: 4\),
\(9: 9,12: 19,13: 8\),
20:20, 20:23, 50:20,
230:14
submitting [1] - 51:4
subsidence [2]-80:8,
169:18
substantial [6] -
15:18, 51:17,
122:19, 158:4,
159:18, 206:20
substantially [5] -
22:24, 178:17, 206:17, 218:12, 220:10
substrate [2] - 208:3, 208:18
subsurface [22] -
30:21, 31:13, 32:25,
33:12, 36:9, 37:16,
54:12, 55:7, 64:15, 70:9, 73:14, 83:17,
112:19, 119:24,
126:3, 143:9,
143:12, 146:16,
239:7, 240:9, 240:11
sudden [2] - 168:19,
168:25
sufficient [4]-28:11,
30:6, 30:7, 30:15
suggest [1] - 189:2
suggesting [2] -
124:24, 251:9
suggestion [1] - 43:3
suitable [3]-29:12,
236:6, 243:8
Suite [3]-2:15, 2:20, 3:16
sum [2]-78:8, 78:10
summarize [1] -
121:16
summary [2] - 60:16,
77:4
summer [1] - 20:11
superintendent [2] -
192:4, 218:10
supervision [3] -
223:4, 223:18
supervisors [1] - 34:1
support [4]-11:4,
119:17, 174:5,
174:10
supported [2] - 119:7,
120:7
supporting [3] -
116:13, 183:13, 210:24
supports [2] - 36:5
supposed [2] -
108:11, 190:7
surcharge [6] - 57:14, 57:17, 84:9, 84:10, 110:18, 179:1
surcharging [1] 110:15
surety [1] - 224:13
surface [27] - 67:8,
70:5, 70:10, 70:17,
70:18, 77:12,
117:17, 121:20,
121:22, 137:1,
140:25, 142:13,
143:9, 144:3,
146:15, 149:4,
172:17, 198:21,
198:25, 209:23,
219:8, 233:17,
239:8, 240:15,
246:20, 252:1,
269:20
surfaces \([2]-195: 13\), 209:3
surficial [2] - 80:12, 241:3
surprising [1] - 182:3
surrounding [1] 28:10
surrounds [1] 197:20
survey [5] - 17:20, 92:19, 115:25, 117:17, 117:19
surveying [3] - 13:24, 71:6, 94:12
surveys [3] - 26:6, 249:7, 271:7 susceptible [1] 111:17
suspect [1] - 71:12
suspenders [1] 116:18
Suzanne [1] - 226:11
swear [2]-6:21, 6:25
swept [1] - 227:8
swinging [1] - 229:25
switch [1] - 75:1
switching [1] - 273:15
sworn [9]-6:22,
12:10, 47:17, 60:10,
77:22, 85:20, 106:3,
121:7, 175:4
SWORN [1] - 7:1
system [20]-79:3,
95:23, 132:2, 141:6, 142:17, 142:22, 177:10, 194:1, 194:4, 195:14, 208:6, 211:6, 228:20, 253:20, 253:23, 255:21, 257:2, 266:3, 269:24 systems [4] - 119:21, 208:11, 265:17
\begin{tabular}{c}
\hline T \\
\hline table \([2]-81: 5,102: 4\) \\
tack \([1]-205: 14\) \\
tag \([4]-80: 20,158: 8\), \\
\(159: 22,251: 15\) \\
TAKEN \(33-63: 23\), \\
\(147: 5,206: 1\) \\
tap \([1]-228: 15\) \\
task \([1]-43: 25\) \\
taxes \([2]-74: 21\),
\end{tabular}

74:23
team [13]-13:9,
44:16, 46:21, 46:23,
47:6, 47:7, 47:11,
47:12, 47:13, 48:4,
48:5, 80:20, 259:20
teams [1]-259:20
tear [6]-74:7, 167:4, 167:14, 167:15, 168:8, 192:16
technical [5] - 44:14, 46:18, 75:15, 78:7, 246:4
technicalities [2] -
115:11, 123:23
technically [3]-14:16, 78:19, 201:4 technique [2] 122:24, 126:18
techniques [1] 126:19
technology [3]-91:6, 155:15, 267:9
tectonic [1]-245:21
teeth [1] - 65:25
temporary [4] -
185:23, 187:4, 187:9, 187:22
ten [11]-7:11, 33:7, 60:3, 107:12, 152:4, 193:24, 194:18, 198:23, 225:20, 248:21, 265:4
tend \([2]-81: 25,187: 1\)
tending [3] - 78:9, 78:10, 107:19
tennis [3]-184:25, 190:10, 191:15
tenth [1] - 208:17
term [6] - 53:19,
54:23, 69:20, 76:23, 153:20, 246:5
termed [1] - 119:20
terminology [2] 14:24, 41:13 terms [13]-14:15, 23:9, 31:13, 40:7, 45:16, 56:11, 151:17, 180:23, 207:3, 213:15, 218:11, 221:18, 269:18
terrace [2] - 239:2, 240:14
terracing [2] - 239:4,
239:24
terrain [1] - 19:5
terry [1]-2:5
Tersagi [1] - 170:16
test [20]-21:7, 21:13,

21:18, 21:20, 22:1, 22:2, 54:15, 54:16, 64:19, 80:25, 83:18, 110:3, 115:12, 126:7, 127:15, 127:18, 127:20, 138:23, 149:9, 160:9
tested [1] - 243:1
testified [19]-38:9, 45:15, 49:23, 51:9, 53:23, 58:13, 74:24, 75:4, 85:25, 91:9, 91:20, 105:1, 141:15, 233:25, 234:9, 242:1, 262:2, 264:14, 270:12 testify [10]-6:17, 6:19, 6:21, 6:24, 7:6, 9:17, 9:21, 10:6, 40:6, 131:1
testifying [2] - 8:5, 150:3
testimony [28] -9:18, 11:1, 11:10, 17:23, 18:7, 18:14, 20:22, 39:23, 40:18, 42:1, 44:6, 69:5, 80:21, 91:14, 105:17, 109:20, 132:5, 148:3, 149:22, 156:7, 174:12, 175:11, 176:10, 182:4, 188:3, 257:15, 270:10, 276:22
testing [8]-24:24, 114:24, 129:3, 129:6, 129:10, 180:17, 180:21, 181:14
tests [6]-54:15, 114:17, 115:1, 115:4, 115:6, 188:19
THE [6] - 13:1, 18:19,
44:21, 68:20, 274:10, 276:24
theirs [1]-171:25
themselves [1] 211:17
theoretical [1] - 80:7
theory [1] - 274:8
thereby [1] - 6:23
therefore [6]-17:15,
23:20, 62:2, 144:22,
146:7, 153:25
they've [5] - 153:10, 201:15, 227:7, 264:6, 271:13
thick [4]-22:25, 65:16, 110:23,

173:13
thickness [2] - 65:15,
232:15
thin [2]-114:1, 114:23
thinking [4]-104:19,
172:9, 180:16, 233:1
thinks [2]-260:14, 269:7
third [3]-21:6, 179:7,
179:13
Thirty [2] - 22:18, 253:6
thirty [2]-232:3, 238:4
thirty-three [1] - 238:4
THOMAS [2] - 3:15, 3:16
Thomas [10] - 191:13,
193:16, 197:6,
234:9, 238:24,
241:22, 242:1,
262:1, 271:4, 271:14
Thomas' [1] - 191:5
thoughts [1]-44:7
thousand [9] - 63:8, 63:10, 107:7, 107:8, 193:21, 193:22, 203:21, 225:22, 225:23
thousands [1] - 58:9
Three [1] - 101:11
three [26]-23:4,
60:24, 88:8, 88:14,
94:25, 96:17, 96:20,
112:22, 117:20,
135:7, 183:16,
199:12, 200:5,
200:6, 200:10,
201:4, 206:13,
238:1, 238:4, 238:6,
238:19, 239:20,
248:20, 248:22
three-to-one [9] -
135:7, 199:12,
200:5, 200:6,
200:10, 238:1, 238:6, 238:19
throughout [16] -
15:2, 15:3, 15:6,
23:4, 26:7, 26:13,
50:4, 52:7, 52:15,
94:4, 94:10, 128:10,
132:11, 133:9,
175:22, 249:10
throw [2] - 145:9, 275:22
throwing [1] - 74:19
thunder [1] - 268:5
timing [2] - 23:5, 23:9

Tirimacco [1] - 2:6
TO [1] - 5:1
today [24] - 7:6, 8:5,
9:24, 16:19, 20:5, 20:21, 25:17, 27:13, 29:18, 31:9, 32:7, 33:16, 34:9, 38:10, 38:18, 39:23, 45:15,
58:2, 61:22, 62:23,
123:12, 180:18,
231:8, 232:11
together [2] - 251:12, 270:20
Tom [1] - 64:9
Tonka [1] - 66:2
Tony [1] - 2:6
took [3]-21:20,
168:14, 271:3
tool [1] - 84:15
tools [3]-65:4, 84:15,
91:5
tooths [1] - 24:21
tooting [1] - 221:8
top [40]-22:22, 56:14,
57:16, 60:18, 73:17,
74:11, 82:6, 104:14,
110:8, 110:14,
122:8, 122:21,
133:16, 133:22,
134:20, 134:21,
141:1, 143:24,
165:22, 166:19,
172:18, 173:6,
179:2, 187:16,
198:3, 200:15,
200:20, 214:3,
216:8, 217:13,
229:3, 232:19,
237:18, 239:17,
246:13, 252:4,
263:6, 263:25,
264:7, 271:23
topic [1] - 175:14
topographic [2] -
127:11, 238:13
topography [6] 54:13, 54:14, 197:17, 197:18, 198:10
topple [2] - 252:10
topsoil [2] - 22:4, 65:7
tornado [4]-41:5,
41:9, 41:21, 42:5
total [4] - 184:13,
184:14, 198:24,
228:5
totaled [2] - 61:9, 61:10
totally [1] - 267:24
touch [1] - 270:16
touched \([2]-263: 1\),
\(264: 5\)
tour \([1]-195: 11\)
tours \([1]-193: 14\)
tow \([29]-14: 22\),
\(29: 15,70: 21,85: 25\),
\(86: 1,86: 4,86: 13\),
\(86: 16,86: 20,87: 4\),
\(87: 9,87: 12,87: 14\),
\(87: 15,87: 17,87: 24\),
\(87: 25,88: 3,88: 15\),
\(95: 7,112: 11\),
\(116: 13,116: 14\),
\(179: 5,187: 12\),
\(187: 18,210: 22\)
toward [1]-176:12 towards [10]-23:7, 28:5, 82:6, 87:20, 88:12, 121:3, 141:25, 197:23, 197:24, 219:19
tower [1]-3:11
town [1]-223:10
township [6] - 15:3, 95:13, 96:21, 124:3, 152:25, 154:1
TOWNSHIP [2]-1:1, 2:4
Township [45]-2:11, 6:5, 15:7, 43:8, 43:10, 43:23, 44:1, 45:8, 48:14, 49:14, 49:16, 49:20, 50:9, 50:15, 50:21, 50:25, 51:7, 51:13, 51:19, 58:5, 58:8, 59:19, 60:20, 61:24, 63:1, 69:7, 69:16, 94:24, 131:14, 133:10, 157:13, 157:25, 158:5, 158:9, 159:19, 159:24, 161:6, 161:8, 161:25, 184:9, 206:18, 228:8, 248:10, 267:2
Township's [1] - 90:8
toys [1] - 66:2
track [1] - 89:6
tracks [1]-60:25
tractor [3]-29:4, 29:6
tractor-trailer [1] 29:4
trade [1] - 133:6 traffic [14]-18:8, 18:16, 57:17, 84:8, 88:21, 88:22, 96:15, 96:22, 97:1, 97:2, 158:16, 209:16, 209:18, 221:17
Trafford \([2]-215: 17\),
217:17
trailer \([1]-29: 4\)
trailers \([2]-29: 4,29: 6\)
transcript \([1]-278: 6\)
transcription \([3]-\)
278:8, 278:10,
278:12
transitional \([1]-\)
176:17
translate \([1]-107: 5\)
transparent \([1]-\)

112:22, 130:22,
134:11, 135:9,
148:9, 154:21,
210:16, 219:25,
247:10, 256:16
trying [14] - 58:18,
78:2, 109:22,
110:12, 112:3,
136:20, 140:8,
144:21, 148:8,
178:19, 240:11,
252:5, 253:9, 258:5
Tuhl [7]-22:21,
80:15, 101:10,
101:19, 160:12,
167:11, 168:7
Tuhl's [1] - 24:2
turn [3]-27:20,
142:25, 172:4
Turnbull [4] - 4:7,
4:12, 4:15, 76:9
TURNBULL [7]-2:19,
76:10, 76:14, 78:1,
85:3, 85:24, 266:25
turning [1] - 170:17
turns [2]-11:20,
84:11
TV [1] - 136:11
tweaked [1]-247:9
twenty [2]-224:18,
240:1
twice [1] - 193:7
two [44]-7:4, 7:5,
20:18, 23:4, 27:20, 43:12, 49:18, 61:9, 112:17, 115:18, 115:20, 117:23, 118:12, 124:5, 126:6, 135:6, 137:1, 138:17, 146:25, 164:5, 178:9, 183:16, 189:22, 192:9, 199:9, 199:13, 200:4, 200:22, 200:25, 201:12, 202:9, 206:3, 215:9, 215:16, 216:23, 230:16, 238:8, 238:12, 238:19, 269:12, 270:10, 270:19, 275:9, 276:16
two-to-one [9] - 135:6,
199:9, 199:13,
200:4, 200:22,
200:25, 238:8,
238:12, 238:19
Twp [1] - 5:6
type [28]-15:9, 19:9,

25:18, 27:11, 33:3,
38:2, 45:9, 46:1,
52:1, 55:16, 58:25,
79:11, 80:10, 85:1,
92:12, 105:1,
107:15, 116:6,
126:21, 150:15,
155:14, 164:18,
169:21, 198:9,
241:7, 244:22,
245:15
types [10]-28:19,
40:13, 40:14, 116:8,
152:17, 153:24,
155:12, 161:13,
199:7, 265:24
typical [3]-92:10, 236:7
typically [15] - 79:21,
84:16, 117:13,
136:22, 139:20,
149:9, 149:10,
149:13, 149:14,
187:2, 187:8, 230:6,
241:2, 243:22
\(\frac{\mathbf{U}}{\mathbf{U . S}_{[1]}-3: 11}\)
ugly \({ }_{[1]}\) - 166:5
ultimate \({ }_{[1]}\) - 171:25
ultimately [5] -
109:18, 126:2,
210:4, 210:10,
210:12
umpteen [1]-69:21
unaware [4]-27:13,
29:18, 29:24, 30:14
unbearable [1] 220:17
uncompacted [1] 70:22
unconsolidated \({ }_{[1]}\) -
15:16
uncontrolled [6] -
178:22, 179:2,
179:14, 179:18,
204:15, 210:20
uncovering [1] - 126:3
undefined \({ }_{[1]}\) - 182:15
under [12] - 11:11,
67:10, 110:6, 120:2,
121:25, 122:1,
122:20, 135:13,
155:22, 191:6,
204:16, 261:10
underground [5] -
81:3, 120:10,
121:22, 169:15
underlain [3]-21:9,

243:17, 244:14
underlying [1] -
144:17
underneath [10] 30:24, 66:23, 66:24, 70:6, 141:20,
142:18, 151:12,
173:10, 243:18,
245:5
understood \([3]\) - 11:5,
12:3, 258:11
undertake [5] -
112:17, 117:24,
123:8, 126:19,
131:24
undertaken \([7]-83: 9\),
117:14, 117:19,
125:9, 126:12,
181:11, 181:16
undertakes [2] -
126:22, 127:2
undeveloped [1] 258:17
undisturbed \(\left.{ }^{2}\right]\) -
82:17, 270:13
unexpected \({ }^{11]}\) 118:21
unfortunately \({ }_{[1]}\) 130:2
uniform [1] - 70:22
unique \([1]\) - 16:24
United [4]-52:24,
53:4, 59:14, 106:10
unity [1] -78:16
unknown [3] - 31:1, 53:24, 98:23
unknowns [2]-33:19, 38:8
unless [7]-38:16, 65:2, 122:15,
123:11, 139:20,
140:21, 219:13
unlikely [1] - 170:1
unnecessarily \({ }_{[1]}\) -
116:17
unstable [6] - 78:20,
79:13, 81:11, 84:12,
134:16, 250:5
unsuitable [1] 243:15
unusual [4]-129:1, 153:9, 187:15, 200:24
up [112] - 12:24, 15:11, 15:19, 16:12, 16:15, 19:8, 24:3, 29:7,
29:16, 50:25, 52:4,
55:20, 56:5, 56:21,
63:25, 68:7, 71:22,
72:21, 72:22, 75:12,

75:14, 77:19, 83:8, 83:19, 87:2, 88:10, 89:23, 95:8, 96:1,
108:12, 109:12,
112:25, 118:1,
119:15, 122:10, 123:24, 126:23, 136:25, 137:4, 138:16, 138:18, 139:10, 140:6, 141:1, 141:12, 142:22, 143:19, 145:17, 149:10, 149:17, 163:21, 166:22, 167:24, 168:15, 168:17, 168:25, 169:6, 169:16, 171:7, 173:13, 173:21, 175:10, 177:2, 177:19, 180:11, 180:16, 184:1, 185:22, 186:1,
195:7, 212:20,
214:23, 217:23,
218:2, 220:23,
221:4, 221:7,
221:15, 224:11,
224:20, 225:1,
225:2, 225:4,
225:10, 225:16,
227:5, 227:9,
227:16, 228:1,
229:3, 229:12,
229:15, 232:17,
237:16, 253:1,
254:11, 257:1,
258:4, 258:23,
260:15, 262:14,
263:12, 264:7,
266:3, 267:22,
268:19, 269:18,
273:14, 275:5, 275:8
updated [1] - 263:20
upper [1] - 233:15 upstream [1]-222:10 uses [5]-17:11, 35:1, 126:18, 126:20, 209:16
utilities [3] - 120:16,
196:19, 196:23
utility [4] - 95:20,
96:12, 120:25,
122:13
utilize [2]-91:5, 145:1
utmost [1] - 223:23
— V

VALLEY \(_{[2]}-1: 13\),

2:13
Valley [7] - 6:10, 91:15, 94:5, 132:7, 236:5, 236:9, 236:11
valley [4]-133:16, 135:12, 135:14, 135:15
valleys [1] - 132:17
value [1] - 209:2
valves [1] - 96:8
variables [1] - 53:24
variation [2] - 33:8, 245:20
variations [2] 118:14, 118:15
various [5] - 84:15, 84:18, 127:12, 155:11, 235:17
vary [2] - 240:17, 240:18
varying [4] - 34:15, 35:9, 39:21, 45:20
vegetate [2] - 241:13, 265:7
vegetated [1] - 266:7
vegetation [11] -
61:14, 85:9, 161:17, 189:19, 240:7, 241:1, 241:2, 241:12, 265:20, 265:24, 274:1
vegetative [1] - 234:14
vehicle [2]-41:15, 41:20
vehicles [5] - 28:19, 61:4, 88:23, 209:15, 221:1
velocities [2]-208:8, 235:17
velocity [4] - 82:25, 83:6, 208:25, 209:10
verge [1] - 78:17
verified [2] - 115:24, 209:11
verify [3] - 12:18, 181:6, 187:21
versus [4]-20:10, 90:12, 153:8, 186:23
vertical [5] - 115:19, 115:21, 119:18, 202:24, 203:1
vertically [5] - 73:5, 118:2, 118:16, 119:4, 235:18 viable [2] - 241:7, 244:12
vibration [3]-83:10,
251:4, 256:6
vibrations [8] -
137:21, 179:19,

208:7, 209:1, 235:2,
256:11, 256:13
vicinity [1] - 222:2
video [1] - 260:21
videotape [1] - 26:11
view [2] - 40:7, 40:8
Vince [4]-11:7,
158:17, 264:19, 274:7
VINCENT [1] - 2:10
visited [1] - 49:3
Vitae [1] - 12:19
vital [1] - 214:25
voice [2] - 66:16, 261:3
volume [10] - 96:22,
196:5, 209:18,
219:15, 222:4,
225:19, 226:1,
268:6, 269:2, 269:20
vulnerable [1] - 86:21
W
wait [4] - 118:12,
174:18, 185:11
waived [1] - 228:16
waiver [1] - 12:2
walk [4] - 41:7, 178:6,
190:3, 258:19
walked [2] - 66:16,
228:1
Walker [5] - 18:23,
24:3, 35:6, 166:20,
231:16
Walkers [1] - 164:12
wall [6]-116:4, 116:5,
116:7, 116:12,
116:22, 116:25
walls [14]-110:24,
110:25, 111:9,
116:8, 116:18,
134:18, 135:8,
151:23, 151:25,
152:2, 152:6, 152:9, 214:10
Walmart [12]-48:25,
104:16, 105:14,
108:8, 108:14,
109:24, 110:3,
130:15, 130:16,
130:21, 165:21,
252:21
Walmart's [1] - 108:13
Walmart-Kilbuck [1] 252:21
wants [4]-68:17,
111:1, 206:3, 234:10
washed [1] - 70:13
waste [1] - 196:16
watched [1] - 171:7
watching [1] - 114:22
water [155] - 14:20,
45:21, 64:15, 64:18, 64:20, 64:23, 65:1, 66:10, 67:7, 67:8, 67:17, 67:18, 70:3,
70:9, 70:10, 71:13,
71:14, 71:18, 71:23, 73:2, 73:7, 73:10, 73:13, 73:21, 73:25, 75:8, 75:12, 75:18, 75:19, 75:22, 77:13, 81:1, 81:5, 81:18, 81:20, 81:22, 81:23, 82:2, 82:16, 84:24, 85:6, 95:5, 95:22, 95:23, 96:5, 96:6, 96:9, 97:18, 113:8, 113:16, 113:22, 115:9, 120:23,
140:24, 140:25,
141:5, 141:9,
141:19, 141:24,
142:8, 142:13,
142:25, 143:2,
143:6, 143:15,
143:25, 144:2,
144:3, 144:6, 151:5,
162:10, 162:20,
163:16, 163:21,
164:23, 165:9,
165:12, 177:1,
177:3, 177:6,
177:10, 177:12,
177:22, 178:21,
179:7, 179:8, 179:9,
179:11, 180:2,
193:16, 193:24,
194:3, 194:5,
194:13, 194:16,
194:22, 195:14,
196:6, 199:10,
210:2, 210:8,
210:19, 214:11,
218:19, 219:8,
219:11, 225:10,
225:16, 226:2,
226:23, 227:15,
240:2, 240:4, 240:8,
240:10, 241:3,
251:24, 252:1,
252:2, 253:18,
253:19, 254:9,
254:13, 255:21,
255:22, 255:23,
256:19, 256:22,
256:24, 257:2,
257:4, 257:9, 258:8, 258:14, 265:18,
266:3, 268:6,

269:19, 269:21,
270:2, 270:6,
272:15, 274:11,
274:18, 274:20,
274:21, 274:24,
275:3, 275:5, 276:2
Waterfront [1] - 2:15
waterline [1]-227:21
wave [5] - 82:25,
207:14, 209:1,
228:21, 235:19
waves [2]-207:4,
208:19
Wayne [1] - 193:7
ways [6] - 74:18,
89:11, 117:16,
119:16, 119:17,
207:14
weak [2] - 73:6, 245:2
weather [3]-73:1,
77:12, 267:10
weathered [1] 233:16
weathering [2] -
70:24, 233:19
website [1] - 68:24
weeks [2] - 28:15,
118:12
weight [4]-87:6,
139:1, 164:13,
209:22
weights [1] - 136:10
Weiss [1] - 2:19
welfare [1] - 161:6
well-experienced [1] 223:3
west \([7]-21: 8,88: 11\),
141:7, 141:17,
153:9, 153:11,
158:14
Western [8] - 40:11,
52:19, 52:22, 53:1, 91:11, 99:3, 156:17, 156:18
wet [2] - 112:24,
244:10
wetland [1] - 66:19
wetlands [1] - 19:7
whatsoever [1] -
133:24
whereas [2]-16:22,
90:22
whereby [1]-8:8
whichever [1] - 105:24
whole [28] - 15:2,
15:6, 23:5, 27:4,
32:14, 70:25, 87:20,
93:22, 129:24,
130:3, 132:14,
133:9, 185:12,
```

